Original Research Article

B-scan measurement of optic nerve sheath diameter as a marker of elevated intracranial pressure

Gaurav Raj, Ragini Singh, Manish Deodhar*, Abhishek Chauhan, Tushant Kumar, Manju Gaur

Department of Radiodiagnosis, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Received: 05 May 2017
Accepted: 10 May 2017

Correspondence:
Dr. Manish Deodhar
E-mail: manishdeodhar1@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Elevated intracranial pressure is a complication of several traumatic as well as non-traumatic medical conditions. Clinical diagnosis can be difficult as it may present with non-specific complaints such as headache, vomiting, blurred vision, vomiting and altered sensorium. The expertise to perform ophthalmoscopy is not always immediately available in emergency rooms and the access to cross sectional imaging may be limited. Distention of the optic nerve sheath is an early sign of raised ICP as it is in direct communication with the subarachnoid space. Ultrasound is a widely available tool in emergency situations which can be used to measure the optic nerve sheath diameter (ONSD).

Methods: In this prospective observational study, 36 patients suspected of having elevated intracranial pressure underwent high resolution B-scan ultrasound to measure the ONSD. Further, patients underwent CT scan of head and were evaluated for signs of raised ICT. Sensitivity and specificity of B-scan measurement of ONSD with CT scan was compared.

Results: The ONSD measurement was 88.5% sensitive (95% CI 68% to 97%) and 90% specific (95% CI 55% to 99%) with CT as the reference.

Conclusions: Bedside ultrasound B-scan measurement of the optic nerve sheath diameter provides information about raised intracranial pressure with a high sensitivity and specificity.

Keywords: B-scan ultrasound, Elevated intracranial pressure, Optic nerve sheath diameter

INTRODUCTION

Elevated intracranial pressure is a common condition encountered in the emergency room and is often difficult to diagnose clinically as it presents with a variety to non-specific signs and symptoms.

Ultrasound is a readily available portable bed side imaging modality available to physicians which can be used to visualize the proximal portion of the optic nerve for detection of elevated intracranial pressure. Elevated intracranial pressure is a complication of several traumatic as well as non-traumatic medical conditions. Clinical diagnosis can be difficult as it may present with non-specific complaints such as headache, vomiting, blurred vision, vomiting and altered sensorium. Distention of the optic nerve sheath is an early sign of raised ICP as it is in direct communication with the subarachnoid space.

The objective of this study was to determine the sensitivity and specificity of ultrasound B scan measurement of optic nerve sheath diameter (ONSD) as a marker of elevated intracranial pressure with CT scan as imaging standard.
METHODS

A prospective observational study designed from 1st January to 30th June 2015. Study conducted in Emergency room at Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.

Adult cases presenting in the emergency room of Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow with a clinical suspicion of elevated intracranial pressure eg. complaints of headache, vomiting, blurred vision and vomiting or altered sensorium underwent bedside B-scan measurement of optic nerve sheath diameter using the technique detailed below.

Technique of B-scan measurement of ONSD

The ONSD was measured bilaterally on a Hitachi HI VISION Avius® ultrasound unit using a 10-MHz linear probe on the closed upper eyelid of supine patients with adequate aqueous gel as coupling agent. The oblique axial view was used to focus the optic nerve with a straight or downward gaze. In case of frontal gaze deviation, the lower eyelid was used. In extreme gaze deviations, the lateral axial view was used if the previous two views failed. As the most distensible part of the optic nerve sheath lies approx. 3 mm behind the vitreo-retinal interface, ONSD was measured at this level perpendicular to the axis of the nerve. For each patient, the average of the bilateral ONSD measurements was calculated.

Table 1: CT scan parameters.

<table>
<thead>
<tr>
<th>Scan range</th>
<th>From top of C1 lamina through top of calvarium</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV</td>
<td>120</td>
</tr>
<tr>
<td>mAs</td>
<td>300</td>
</tr>
<tr>
<td>Collimation</td>
<td>64 x 0.625 mm</td>
</tr>
<tr>
<td>Slice thickness</td>
<td>5 mm</td>
</tr>
<tr>
<td>Increment</td>
<td>0.75 mm</td>
</tr>
<tr>
<td>Reconstruction slice thickness</td>
<td>1.5 mm</td>
</tr>
</tbody>
</table>

Table 2: Observations.

<table>
<thead>
<tr>
<th>CT findings of raised ICP</th>
<th>CT findings of raised ICP absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONSD ≥ 5 mm</td>
<td>23</td>
</tr>
<tr>
<td>ONSD < 5 mm</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure 2: B-scan ONSD measurement with CT findings of raised ICP.

RESULTS

36 patients were enrolled, of which 26 had CT signs of raised ICP.
The average ONSD in patients without CT signs of raised ICP was 4.45 mm while average ONSD in those with raised ICP was 6.1 mm.

The ONSD measurement was 88.5% sensitive (95% CI 68% to 97%) with CT as the reference.

The ONSD measurement was 90% specific (95% CI 55% to 99%) with CT as the reference.

DISCUSSION

B-scan ultrasound for evaluation of ONSD is a widely available technique requiring minimal training which can be performed at the bedside of critically ill patients. Sex, age, gender, anthropometric factors and medical history are likely to influence an individual’s ONSD. The variation in the cut-off value for ONSD across studies ranges from 4.8 mm to 6.0 mm. However, the bulk of studies have used 5 mm as cut off.10

Example B-scan ultrasound measurement of ONSD in a case of raised ICT

![B-scan ultrasound measurement of ONSD](image)

While papilloedema may take time to develop, dilatation of the optic nerve sheath occurs much earlier and may be a near-instantaneous manifestation of raised intracranial pressure.11 The main value of ultrasound lies in early evaluation, during the initial assessment and resuscitation or transport phases, where cross-sectional imaging is unavailable.

CONCLUSION

B-scan measurement of optic nerve sheath diameter is a useful tool for detecting raised ICP in adults. As a portable modality, it can be used both in hospitals as well as in the field. It can serve as an aid to confirm clinical suspicion thereby expediting therapy.

ACKNOWLEDGEMENTS

Authors would like to thank the aid provided by the staff of the department of Emergency Medicine as well as Department of Radiodiagnosis in the completion of this study.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

