Simple detection of Bacillus anthracis spores by precipitation method with goat antibody anti anthrosa

Authors

  • M. L. Edy Parwanto Department of Biology, Faculty of Medicine, University of Trisakti, Jakarta
  • Alfred Pakpahan Department of Biology, Faculty of Medicine, University of Trisakti, Jakarta
  • Hosea Jaya Edy Department of Pharmacy, Faculty of Mathematics and Natural Science, University of Sam Ratulangi, Manado

DOI:

https://doi.org/10.18203/2320-6012.ijrms20163286

Keywords:

Bacillus anthracis, Bioterrorism, Biological weapon, Anthrosa, Goat antibody anti anthrosa

Abstract

Background: Bacillus anthracis has a potential for biological weapon or bioterorism. Attack of Bacillus anthracis is very fatal, and the distribution is very easy and cheap through the spores. The aim of this was study to detect the spores of Bacillus anthracis.

Methods: Bacillus anthracis isolates were grown on serum agar and then sheep blood medium, to stimulate capsule formation. Spores which formed painted using the method of Schaefer and Fultton. The methods of precipitation and immuno-chromatography were used to spores detection of Bacillus anthracis.

Results: Painting with Schaeffer and Fulton method showed that spores of Bacillus anthracis are green. Precipitation reaction between spores of Bacillus anthracis with goat antibody anti anthrosa was resulting in a silver white color. Anthrosa of Bacillus anthracis spores was detected by means of immuno-chromatography using goat antibody anti anthrosa. The molecular weight of anthrosa  is ±148 kDa.

Conclusions: The methods of precipitation and immuno-chromatography using goat antibody anti anthrosa can be used to detection of Bacillus anthracis spores. Goat antibody anti anthrosa can react positively with Bacillus anthracis spores.

References

Yuen ECP. Biological warfare: the facts. Hong Kong J Emerg Med. 2001;8:232-40.

Ahmod NZ, Gupta RS, Shah HN. Identification of a Bacillus anthracis specific indel in the yea C gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods. 2011;87:278-85.

Hess G. Biosecurity: an evolving challenge. Chem & Engin News. 2012;90(7):30-2.

Centers for Disease Control and Prevention of The United State of America (CDC). Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. 2000;49:1-20.

Radosavljević V. Biodefense System-Communicable Diseases and Public Health. J Bioterror Biodef. 2016;7:1.

Spencer RC. Bacillus anthracis. J Clin Pathol. 2003;56:182-7.

Saraswathi SV, Padmavathy J, Mamatha B, Bindu HSN, Vijayalakshmi S. A Sin of Biotechnology, Bioterrorism–Anthrax. Int J PharmTech Res. 2010;2:2044-7.

Scorpio A, Chabot DJ, Day WA, O'brien DK, Vietri NJ, Itoh Y, et al. Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother. 2007;51(1):215-22.

Tamborrini M, Holzer M, Seeberger PH, Schu¨rch N, Pluschke G. Anthrax spore detection by a luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides. Clin Vaccine Immunol. 2010;17:1446-51.

Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, et al. Novel oligosaccharide side–chains of the collagen–like region of BclA, the major glycoprotein of Bacillus anthracis. J Biol Chem. 2004;279:30945-53.

Kubler-Kielb J, Vinogradov E, Hu H, Leppla SH, Robbins JB, Schneerson R. Saccharides cross-reactive with Bacillus anthracis spore glycoprotein as an anthrax vaccine component. Proc Natl Acad Sci USA. 2008;105(25):8709-12.

Maes E, Krzewinski F, Garenaux E, Lequette Y, Coddeville B, Trivelli X, et al. Glycosylation of BclA glycoprotein from Bacillus cereus and Bacillus anthracis exosporium is domain specific. J Biol Chem. 2016;291(18):9666-77.

Peng Q, Kao G, Qu N, Zhang J, Li J, Song F. The Regulation of Exosporium Related Genes in Bacillus thuringiensis. SciRep. 2016;6(19005):1-12.

Bell CA, Uhl JR, Hadfield TL. Detection of Bacillus anthracis DNA by light cycler PCR. J Clin Microbiol. 2002;40(8):2897-902.

Ryu C, Lee K, Yoo C, Seong WK, Oh HB. Sensitive and rapid quantitative detection of anthrax spore isolated from soil samples by real-time PCR. Microbiol Immunol. 2003;47(10):693-9.

Vahedi F, Moazeni Jula G, Kianizadeh M, Mahmoudi M. Characterization of Bacillus anthracis spores isolates from soil by biochemical and multiplex PCR analysis. Epppkiiast Mediterr Health J. 2009;15(1):149-56.

Hathout Y, Setlow B, Cabrera-Martinez RM, Fenselau C, Setlow P. Small, acid-soluble proteins as biomarkers in mass spectrometry analysis of bacillus spores. Appl & Environtl Microbiol. 2003;69(2):1100-7.

Thompson BM, Stewart GC. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Mol Microbiol. 2008;70(2):421-34.

Aroraa R, Petrova GI, Yakovleva VV, Scullyc MO. Detecting anthrax in the mail by coherent Raman microspectroscopy. PNAS. 2012;109(4):1151-3.

Peckham GD, Hew BE, Waller DF, Holdaway C, Jen M. Amperometric Detection of Bacillus anthracis Spores: A Portable, Low-Cost Approach to the ELISA. Int J Electrochem. 2013;2013(803485):1-6.

Knisely RF. Selective medium for Bacillus anthracis. J Bacteriol. 1966;92:784-6.

Tomaso H, Bartling C, Dahouk SA, Hagen RM, Scholz HC, Beyer W, et al. Growth characteristics of Bacillus anthracis compared to other Bacillus spp. on the selective nutrient media Anthrax Blood Agar® and Cereus Ident Agar®. Syst & Appl Microbiol. 2006;29:24-8.

Wang DB, Yang R, Zhang ZP, Bi LJ, You XY, Wei HP, et al. Detection of Bacillus anthracis Spores and Vegetative Cells with the Same Monoclonal Antibodies. PLoS ONE. 2009;4(11):e7810.

Akbulut A, Akbulut H, Özgüler M, Inci N, Yalçin S. Gastrointestinal Anthrax: A Case and Review of Literature. Adv in Infect Dis. 2012:2:67-71.

Choudhury B, Leoff C, Saile E, Wilkins P, Quinn CP, Kannenberg EL, et al. The Structure of the Major Cell Wall Polysaccharide of Bacillus anthracis Is Species-specific. J Biol Chem. 2006;281(38):27932-41.

Jula GM, Jabbari A, Darmian FV. Determination of anthrax foci through isolation of Bacillus anthracis form soil samples of different regions of Iran. Arch of Razi Inst. 2007;62(1):23-30.

Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol. 2012;2(76):1-13.

Thompson BM, Hsieh H, Spreng KA, Stewart GC. The Co-Dependency of BxpB/ExsFA and BclA for Proper Incorporation into the Exosporium of Bacillus anthracis. Mol Microbiol. 2011;79(3):799-813.

Giorno R, Bozue J, Cote C, Wenzel T, Moody KS, Mallozzi M, et al. Morphogenesis of the Bacillus anthracis spore coat. J Bacteriol. 2007;189:691-705.

Liu H, Bergman NH, Thomason B, Shallom S, Hazen A, Crossno J, et al. Formation and composition of the Bacillus anthracis endospore. J Bacteriol. 2004;186(1):164-78.

Chiang C, Bongiorni C, Perego M. Glucose-Dependent Activation of Bacillus anthracis Toxin Gene Expression and Virulence Requires the Carbon Catabolite Protein CcpA. J Bacteriol. 2011;193(1): 52-62.

Lee JY, Janes BK, Passalacqua KD, Pfleger BF, Bergman NH, Liu H, et al. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol. 2007;189(5):1698-710.

Arnaouteli, Giastas P, Andreou A, Tzanodaskalaki M, Aldridge C, Tzartos SJ, et al. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis. J Biol Chem. 2015;290(21):13465-78.

Shannon JG, Ross CL, Koehler M, Rest RF. Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun. 2003;71:3183-9.

Klichko VI, Miller J, Wu A, Popov S, Alibek K. Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem and Biophys Res Commun. 2003;303:855-62.

Papaparaskevas J, Houhoula DP, Papadimitriou M, Saroglou G, Legakis NJ, Zerva L. Ruling Out Bacillus anthracis. Emerg Infect Dis. 2004;10(4):732-5.

Cybulski RJ, Sanz P, McDaniel D, Darnell S, Bull RL, O’Brien AD. Recombinant Bacillus anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective antigen. Vaccine. 2008;26:4927-39.

Dixon T, Fahd A, Koehler T, Swanson J, Hanna P. Early events in anthrax pathogenesis: intracellular survival of B. anthracis and its escape from RAW264.7 macrophages. Cell Microbiol. 2000,2:453-63.

Ireland JA, Hanna PC. Amino acid–and purine ribonucleoside-induced germination of Bacillus anthracis Delta-Sterne endospores: gerS mediates responses to aromatic ring structures. J Bacteriol. 2002;184:1296-303.

Whitney SEA, Beatty ME, Taylor TH Jr, Weyant R, Sobel J, Arduino MJ, et al. Inactivation of Bacillus anthracis spores. Emerg Infect Dis. 2003;9:623-7.

Gut IM, Tamilselvam B, Prouty AM, Stojkovic B, Czeschin S, van der Donk WA et al. Bacillus anthracis spore interactions with mammalian cells: relationship between germination state and the outcome of in vitro. BMC Microbiol. 2011,11(46):1-12.

Bensman MD, Mackie RS, Minter ZA, Gutting BW. Effect of animal sera on Bacillus anthracis Sterne spore germination and vegetative cell growth. J Appl Microbiol. 2012;113:276-83.

Sylvestre P, Couture-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol. 2002;45(1):5240-7.

Todd SJ, Moir AJG, Johnson MJ, Moir A. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J Bacteriol. 2003;185(11):3373-8.

Downloads

Published

2016-12-19

How to Cite

Parwanto, M. L. E., Pakpahan, A., & Edy, H. J. (2016). Simple detection of Bacillus anthracis spores by precipitation method with goat antibody anti anthrosa. International Journal of Research in Medical Sciences, 4(10), 4319–4325. https://doi.org/10.18203/2320-6012.ijrms20163286

Issue

Section

Original Research Articles