Review Article

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20241586

Modulating gut microbiota in the management of type 2 diabetes mellitus: a narrative review

Meirajuddin Tousif^{1*}, Maria Akhtar²

¹Department of General Medicine, Sri Devaraj Urs Medical College, Karnataka, India

Received: 07 April 2024 Accepted: 10 May 2024

*Correspondence: Meirajuddin Tousif,

E-mail: meirajtousif@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Type 2 diabetes mellitus (T2DM) represents a significant global health burden, necessitating innovative therapeutic approaches. Recent research has increasingly recognized the role of gut microbiota modulation in T2DM management, offering promising avenues for intervention. This systematic review synthesizes current literature investigating the impact of modulating gut microbiota on T2DM management. A comprehensive search of databases yielded studies examining various strategies, including probiotics, prebiotics, dietary interventions, and facal microbiota transplantation. Analysis of these interventions revealed their potential to improve glycemic control, insulin sensitivity, and inflammation markers in individuals with T2DM. Mechanistic insights elucidate how gut microbiota modulation influences metabolic pathways, immune function, and gut barrier integrity, thereby contributing to T2DM pathophysiology. Furthermore, studies highlight the interplay between gut microbiota composition and host factors such as diet, lifestyle, and genetics, underscoring the complexity of this relationship. Modulating gut microbiota presents a promising therapeutic approach in T2DM management, with potential benefits in glycemic control and metabolic health. However, further research is warranted to optimize intervention strategies, elucidate mechanistic pathways, and explore long-term effects. The aim of this review was to underscores the importance of considering gut microbiota modulation as a complementary approach in the multifaceted management of T2DM.

Keywords: Gut microbiota, Type 2 diabetes mellitus, Modulation, Probiotics, Prebiotics, Dietary interventions, Fecal microbiota transplantation, Glycemic control, Metabolic health

INTRODUCTION

Overview of type 2 diabetes mellitus (T2DM) and its global prevalence

T2DM is a chronic metabolic disorder characterized by insulin resistance and relative insulin deficiency. It represents a significant global health challenge, with its prevalence steadily increasing over the past few decades. According to the WHO, an estimated 463 million adults were living with diabetes in 2019, with T2DM accounting for the majority of cases. T2DM is associated with various complications, including cardiovascular

neuropathy, nephropathy, and retinopathy, leading to substantial morbidity and mortality worldwide.

Introduction and significance of gut microbiota in human health

The gut microbiota refers to the diverse community of microorganisms inhabiting the gastrointestinal tract, predominantly composed of bacteria but also including fungi, viruses, and archaea. Emerging research has highlighted the pivotal role of the gut microbiota in maintaining human health, influencing physiological processes such as digestion, metabolism, immune function, and even neurological health. The gut

²Department of Medicine, Khaja Bandawaz Institute of Medical Sciences, Karnataka, India

microbiota interacts with the host through complex metabolic and immunological pathways, playing a crucial role in nutrient absorption, synthesis of vitamins, and protection against pathogens.

Importance of understanding gut microbiota modulation for t2dm management

Understanding the intricate interplay between gut microbiota and T2DM pathophysiology holds immense therapeutic potential for the management of this prevalent metabolic disorder. The composition and functionality of the gut microbiota have been increasingly implicated in the development and progression of T2DM, with alterations in microbial diversity and abundance observed in individuals with T2DM compared to healthy counterparts. Therefore, elucidating mechanisms by which the gut microbiota influences glucose metabolism and insulin sensitivity, as well as exploring strategies to modulate the gut microbiota, represents a promising avenue for novel therapeutic interventions in T2DM management. This literature review aims to comprehensively analyze existing evidence regarding the role of gut microbiota modulation in T2DM, highlighting its potential implications for clinical practice and future research directions.

THE GUT MICROBIOTA COMPOSITION IN TYPE 2 DIABETES MELLITUS

Review of studies examining alterations in gut microbiota composition in individuals with T2DM compared to healthy controls

Numerous studies have demonstrated significant differences in gut microbiota composition between individuals with T2DM and healthy counterparts. For instance, a study highlighted that patient with T2DM exhibited distinct gut microbiota profiles compared to healthy individuals, indicating dysbiosis in T2DM. This dysbiosis is characterized by alterations in microbial diversity and abundance, potentially contributing to metabolic dysfunction and insulin resistance observed in T2DM.

Furthermore, investigations into specific microbial taxa have provided insights into the association between gut microbiota composition and T2DM. Firmicutes, a predominant phylum in the gut microbiota, were identified as having a major abundance in both healthy individuals and those with T2DM.² However, the relative abundance of certain bacterial species within the Firmicutes phylum may differ between T2DM patients and healthy controls, suggesting a role in disease pathogenesis.

Moreover, studies have explored the functional alterations in the gut microbiota of individuals with T2DM. Functional dysregulation in the gut microbiota, such as changes in metabolic pathways and microbial-derived metabolites, may influence glucose metabolism and insulin sensitivity. For example, butyrate-producing

bacteria were found to be negatively correlated with glycemic parameters in individuals with T2DM, indicating a potential link between gut microbiota dysbiosis and T2DM pathophysiology.³

Beyond compositional and functional changes, age-related factors and comorbidities, such as periodontitis, have been implicated in shaping gut microbiota composition in individuals with T2DM. Elderly T2DM and periodontitis patients exhibited distinct gut microbiota profiles compared to healthy controls, suggesting potential interactions between systemic health conditions and gut microbiota composition.⁴

Specific bacterial taxa associated with T2DM and potential mechanisms driving these associations

T2DM represents a significant health challenge globally, with its prevalence steadily increasing. Emerging research has shed light on the intricate interplay between gut microbiota and T2DM pathogenesis. Specific bacterial taxa have been implicated in the development and progression of T2DM, offering insights into potential therapeutic interventions and preventive strategies.

Recent studies have identified several bacterial taxa associated with T2DM, including but not limited to, Firmicutes, Bacteroidetes, and Actinobacteria. Notably, alterations in the relative abundance of these taxa have been observed in individuals with T2DM compared to healthy controls.⁵ For instance, an overrepresentation of Firmicutes and a decrease in Bacteroidetes have been consistently reported in T2DM patients.⁶ Furthermore, specific species within these taxa, such as Akkermansia muciniphila, have been found to correlate with T2DM status, highlighting the potential of targeted interventions at the species level.⁷

Additionally, reduced abundance of Roseburia intestinalis has been observed in T2DM patients, suggesting its involvement in the disease process.⁸ This bacterium's depletion underscores its potential significance in T2DM and related complications.

Understanding the mechanisms driving these associations is crucial for elucidating the pathophysiology of T2DM developing effective interventions. and Several mechanisms have been proposed, including dysregulated host-microbiota interactions, alterations in gut barrier function, and microbial-derived metabolites.⁹ For instance, dysbiosis-induced inflammation and insulin resistance been attributed to the production lipopolysaccharides certain bacteria.¹⁰ by gut Additionally, microbial-derived short-chain fatty acids have been implicated in modulating host metabolism and inflammation, thereby influencing T2DM progression.¹¹

Moreover, dietary factors play a pivotal role in shaping the gut microbiota composition, further influencing T2DM risk. High-fat diets, low in fiber, have been associated with

dysbiosis and T2DM development.¹² Conversely, dietary interventions aimed at promoting a balanced gut microbiota composition, such as increased fiber intake, have shown promise in ameliorating T2DM symptoms.¹³

IMPACT OF GUT MICROBIOTA ON GLUCOSE HOMEOSTASIS

Microbial-derived metabolites (e.g., short-chain fatty acids, bile acids) and their role in regulating glucose homeostasis

Microbial-derived metabolites, such as short-chain fatty acids (SCFAs) and bile acids, have emerged as key regulators of glucose homeostasis, a vital process for metabolic balance.

Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced through the fermentation of dietary fibers by gut bacteria. These SCFAs influence glucose metabolism by acting as signalling molecules that modulate various pathways involved in glucose regulation.¹⁴

SCFAs have been demonstrated to influence glucose metabolism through various mechanisms. They enhance insulin sensitivity in peripheral tissues like adipose tissue and skeletal muscle by activating AMP-activated protein kinase (AMPK), thereby promoting glucose uptake and utilization.¹⁵ Additionally, SCFAs may inhibit hepatic gluconeogenesis by suppressing the expression of key gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), consequently reducing hepatic glucose output. 16 SCFAs also serve as energy substrates for glycolysis, with butyrate notably utilized by colonocytes. 17 Furthermore, SCFAs influence glucose transport by enhancing the translocation of glucose transporter 4 (GLUT4) to the cell membrane, facilitating glucose uptake in adipocytes.¹⁸ Moreover, SCFAs stimulate the secretion of incretin hormones such as glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) from enteroendocrine cells, which play roles in enhancing insulin secretion and reducing gastric emptying and food intake.¹⁹ These collective mechanisms contribute to the beneficial effects of SCFAs on glucose metabolism and insulin sensitivity.

Bile acids, synthesized in the liver and further modified by gut bacteria, have also been implicated in glucose metabolism. Bile acids interact with specific receptors, such as the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5), to regulate key metabolic processes, including gluconeogenesis and insulin sensitivity. Recent studies suggest that bile acids hold therapeutic potential for treating hyperglycemia and diabetes. 1

The intricate interplay between microbial-derived metabolites and host metabolism underscores the importance of gut microbiota in maintaining glucose

homeostasis. Dysbiosis, or an imbalance in gut microbial composition, has been linked to metabolic disorders, emphasizing the significance of microbial metabolites in metabolic health.²² Understanding the mechanisms by which these metabolites influence glucose metabolism holds promise for the development of novel therapeutic interventions for metabolic diseases.

Overview of studies investigating the influence of gut microbiota on insulin sensitivity

One seminal study demonstrated that the transfer of intestinal microbiota from lean donors to individuals with metabolic syndrome improved insulin sensitivity, highlighting the potential therapeutic implications of modulating gut microbiota composition.²³ This finding prompted further investigation into the specific microbial taxa associated with insulin sensitivity. Subsequent research identified an association between decreased insulin sensitivity and reduced abundance of certain beneficial gut bacteria, such as butyrate-producing Conversely, species.²⁴ overrepresentation an opportunistic pathogens was linked to insulin resistance, suggesting a role for dysbiosis in metabolic disorders. Moreover, studies have elucidated potential mechanisms through which gut microbiota influence insulin sensitivity.25

Researchers demonstrated that microbial-derived metabolites, such as short-chain fatty acids (SCFAs), regulate host metabolism and insulin sensitivity. 26 SCFAs serve as energy substrates for colonocytes and exert antiinflammatory effects, thereby modulating insulin sensitivity. Furthermore, gut microbiota can influence host metabolism through interactions with bile acids.²⁷ Scientists found that gut microbes regulate bile acid metabolism, impacting lipid and glucose homeostasis. Dysregulation of this pathway contributes to insulin resistance and metabolic dysfunction. Additionally, dietary interventions have been shown to modulate gut microbiota composition and improve insulin sensitivity.²⁸ Studies demonstrated that dietary changes, such as increased fiber intake or adoption of a Mediterranean diet, promote the growth of beneficial gut bacteria and enhance insulin sensitivity. In conclusion, a growing body of evidence underscores the intricate interplay between gut insulin sensitivity. microbiota composition and Understanding these relationships may offer novel therapeutic strategies for metabolic disorders. Further research is warranted to elucidate specific microbial mechanisms and optimize interventions targeting the gut microbiota to improve metabolic health.

MECHANISMS OF GUT MICROBIOTA MODULATION IN T2DM

Strategies for modulating gut microbiota composition

Modulating gut microbiota through dietary interventions, probiotics, prebiotics, and fecal microbiota transplantation

(FMT) presents promising strategies for T2DM management.

Dietary interventions play a crucial role in T2DM management by influencing gut microbiota composition. High-fiber diets rich in fruits, vegetables, and whole grains have been shown to promote the growth of beneficial bacteria and improve insulin sensitivity in individuals with T2DM.²⁹ Conversely, diets high in saturated fats and refined carbohydrates can alter gut microbiota composition, exacerbating metabolic dysfunction in T2DM patients.³⁰

Probiotics, live microorganisms with beneficial effects on host health, have garnered attention for their potential role in T2DM management. Studies have demonstrated that certain probiotic strains, such as Lactobacillus and Bifidobacterium species, can improve glycemic control and reduce inflammatory markers in individuals with T2DM.³¹ Probiotic supplementations may exert these effects by modulating gut microbiota composition and enhancing intestinal barrier function.³²

Prebiotics, non-digestible fibers that selectively stimulate the growth of beneficial bacteria, offer another avenue for T2DM management. Consumption of prebiotic-rich foods, such as chicory root, garlic, and onions, has been associated with improved glycemic control and reduced risk of T2DM development.³³ Prebiotics exert their effects by promoting the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, which contribute to glucose homeostasis and insulin sensitivity.³⁴

FMT has emerged as a novel therapeutic approach for T2DM management. Preliminary studies have shown that FMT from healthy donors to T2DM patients can improve insulin sensitivity and metabolic parameters by modulating gut microbiota composition.³⁵ FMT may restore a healthy gut microbiota profile in T2DM patients, thereby mitigating metabolic dysfunction and improving glycemic control.

Clinical evidence for gut microbiota modulation in T2DM

Clinical trials assessing gut microbiota modulation interventions in T2DM management represent a burgeoning area of research, reflecting the evolving understanding of the gut microbiome's influence on metabolic health. Studies have explored diverse interventions like prebiotics, probiotics, FMT, and intermittent fasting aiming to reshape the gut microbiota composition to ameliorate metabolic dysregulation associated with T2DM.36 Moreover, promising outcomes from FMT in mice reveal reductions in glucose levels, improvements in insulin sensitivity, and decreased islet cell apoptosis.³⁷ Such findings underscore the therapeutic potential of gut microbiota modulation in T2DM management. Furthermore, a systematic consolidates evidence from human studies, elucidating the

impact of different bacterial taxa on diabetes pathogenesis.³⁸ This comprehensive analysis identifies potential targets for intervention and highlights the importance of personalized treatment strategies based on gut microbiome profiles. Additionally, the significance of ongoing clinical trials in elucidating the interplay between baseline microbiome composition and intervention efficacy is underscored.³⁹ These trials pave the way for tailored approaches to T2DM management, leveraging insights into individual gut microbiota dynamics.

CHALLENGES AND FUTURE DIRECTIONS

Current challenges and limitations in gut microbiota modulation strategies for T2DM management

Identification of current challenges and limitations in gut microbiota modulation strategies for T2DM management is crucial for developing effective therapeutic interventions. Several scientific studies have shed light on these challenges, providing insights into the complex interplay between gut microbiota and T2DM. One significant challenge lies in understanding the specific mechanisms by which gut microbiota modulates T2DM pathophysiology.⁴⁰ While research suggests a clear association between gut microbiota dysbiosis and T2DM, the precise microbial species and metabolites involved require further elucidation.⁴¹

Moreover, the heterogeneity of gut microbiota composition among individuals poses challenges in developing universally applicable modulation strategies. 42 What works for one person may not be effective for another due to variations in diet, genetics, and environmental factors. Additionally, the dynamic nature of gut microbiota further complicates modulation efforts, as microbial composition can change rapidly in response to various stimuli. 43

Another limitation is the lack of robust clinical trials evaluating the efficacy and safety of gut microbiota modulation strategies for T2DM management. While preclinical studies show promise, translating these findings into clinical practice remains a challenge. Furthermore, existing interventions such as probiotics and dietary modifications may yield inconsistent results due to individual variability and lack of standardization in study protocols. 45

Addressing these challenges requires multidisciplinary approaches integrating microbiology, genetics, nutrition, and clinical research. Future studies should aim to identify specific microbial targets and develop personalized modulation strategies tailored to individual patient profiles. Additionally, large-scale clinical trials with long-term follow-up are needed to establish the efficacy, safety, and optimal dosing of gut microbiota modulation interventions for T2DM management.

Potential future research directions, including personalized microbiota-based therapies and microbiome-targeted pharmaceuticals

Discussion of potential future research directions in gut microbiota modulation for T2DM management holds promise for advancing therapeutic interventions. Emerging studies have highlighted avenues for personalized microbiota-based therapies and microbiometargeted pharmaceuticals to address the complexities of T2DM. One potential future research direction is the development of personalized microbiota-based therapies tailored to individual patient profiles. 48 By leveraging advances in microbiome sequencing and analysis, researchers can identify specific microbial signatures associated with T2DM and develop targeted interventions. Personalized diets, probiotics, and FMT could be customized based on an individual's gut microbial composition, potentially leading to more effective T2DM management.49

Another promising direction is the exploration of microbiome-targeted pharmaceuticals aimed at modulating gut microbiota composition and function. ⁵⁰ Small molecules, peptides, or biologics that selectively target key microbial species or metabolites implicated in T2DM pathophysiology could offer novel therapeutic options. These pharmaceuticals may act as adjuvants to existing treatments or as standalone therapies for T2DM. ⁵¹

Furthermore, integrating microbiome data into precision medicine approaches could revolutionize T2DM management. By combining genetic, clinical, and microbiome information, researchers can develop predictive models to identify individuals at high risk of T2DM and tailor interventions accordingly. Personalized microbiota-based therapies and microbiome-targeted pharmaceuticals could thus be prescribed pre-emptively or as part of individualized treatment plans to optimize glycemic control and improve outcomes for T2DM patients.

CONCLUSION

Extensive research underscores the significant impact of gut microbiota modulation on the management of T2DM. Key findings highlight its pivotal role in influencing inflammation, dietary interactions, gut permeability, glucose, and lipid metabolism, as well as insulin sensitivity. These insights provide a foundation for developing targeted interventions aimed at modulating the gut microbiota to prevent and manage T2DM complications. Moving forward, there are promising implications for clinical practice. Microbiome-based interventions offer the potential to complement existing T2DM therapies by providing personalized treatments that address the underlying microbial dysbiosis. By targeting the gut microbiota, clinicians may improve patient outcomes, enhance glycemic control, and mitigate the risk of T2DM-related complications. In summary, the role of gut microbiota modulation in T2DM management represents a burgeoning field with profound implications for patient care. Embracing microbiome-based interventions alongside traditional therapies holds promise for revolutionizing T2DM management strategies and improving the overall health outcomes of individuals affected by this metabolic disorder.

ACKNOWLEDGEMENTS

We would like to acknowledge the support and guidance provided by our academic advisors and colleagues who offered their insights and expertise throughout the research process.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Zhao L, Lou H, Peng Y, Chen S, Fan L, Li X. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Res Clin Pract. 2020;169:108418.
- Almugadam BS, Liu Y, Chen SM, Wang CH, Shao CY, Ren BW, et al. Alterations of Gut Microbiota in Type 2 Diabetes Individuals and the Confounding Effect of Antidiabetic Agents. J Diabetes Res. 2020;2020;7253978.
- 3. Umirah F, Neoh CF, Ramasamy K, Lim SM. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res Clin Pract. 2021;173:108689.
- 4. Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol. 2022;12:834485.
- 5. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger E, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426-36.
- 6. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72.
- 7. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332-45.
- 8. Palmnäs-Bédard MSA, Costabile G, Vetrani C, Åberg S, Hjalmarsson Y, Dicksved J, et al. The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr. 2022;116(4):862-74.
- 9. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut

- microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31.
- Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151-6.
- Lau W, Vaziri N. Gut microbial short-chain fatty acids and the risk of diabetes. Nature Reviews Nephrology. 2019;15(7):389-90.
- 12. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332-45.
- 13. Gao L. A study on the relationship among dietary fiber intake, type 2 diabetes, microbiota and immune system. Highlights in Science Engineering and Technology. 2022;19:51-7.
- 14. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119.
- Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-17.
- Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619-25.
- Hamer HM, Jonkers DM, Vanhoutvin SA, Troost FJ, Rijkers G, de Bruïne A, et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin Nutr. 2010;29(6):738-44.
- 18. Zhang J, Zhang H, Deng X. Butyrate inhibits the proliferation and induces the apoptosis of colorectal cancer cells via modulating of miR-22/SIRT1 pathway. Gene. 2020;739:144500.
- 19. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424-9.
- Alberto González-Regueiro J, Moreno-Castañeda L, Uribe M, Carlos Chávez-Tapia N. The Role of Bile Acids in Glucose Metabolism and Their Relation with Diabetes. Ann Hepatol. 2017;16(1):S15-20.
- 21. Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215(2):383-96.
- 22. Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022;13(4):1106-26.
- 23. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6.

- 24. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103.
- 25. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72.
- 26. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-betamuricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225-35.
- 27. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585-8.
- 28. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-8.
- 29. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022-3.
- 30. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4.
- 31. Larsen N, Vogensen FK, Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.
- 32. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.
- 33. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103.
- 34. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850-8.
- 35. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.
- 36. Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne). 2021;12:632335.
- 37. Wu J, Yang K, Fan H, Wei M, Xiong Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2023;14:1114424.
- 38. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2

- diabetes pathophysiology. EBioMedicine. 2020;51:102590.
- Ghosh TS, Valdes AM. Evidence for clinical interventions targeting the gut microbiome in cardiometabolic disease. BMJ. 2023;383:e075180.
- 40. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590.
- 41. Wu J, Yang K, Fan H, Wei M, Xiong Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2023;14:1114424.
- 42. Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A. The Modulation of Gut Microbiota Composition in the Pathophysiology of Gestational Diabetes Mellitus: A Systematic Review. Biology (Basel). 2021;10(10):1027.
- 43. Erejuwa OO, Sulaiman SA, Ab Wahab MS. Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci. 2014;15(3):4158-88.
- 44. Han JL, Lin HL. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol. 2014;20(47):17737-45.
- 45. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779-86.
- 46. Rastelli M, Knauf C, Cani PD. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring). 2018;26(5):792-800.

- 47. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J Obes. 2016;2016;7353642.
- 48. Kallapura G, Prakash AS, Sankaran K, Manjappa P, Chaudhary P, Ambhore S, et al. Microbiota based personalized nutrition improves hyperglycaemia and hypertension parameters and reduces inflammation: A prospective, open label, controlled, randomized, comparative, proof of concept study. MedRxiv. 2023.
- 49. Xu TC, Liu Y, Yu Z, Xu B. Gut-targeted therapies for type 2 diabetes mellitus: A review. World J Clin Cases. 2024;12(1):1-8.
- 50. Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother. 2022;149:112839.
- 51. Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, et al. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne). 2022;13:958218.
- Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne). 2022;13:958218.

Cite this article as: Tousif M, Akhtar M. Modulating gut microbiota in the management of type 2 diabetes mellitus: a narrative review. Int J Res Med Sci 2024;12:2179-85.