Original Research Article

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20242936

Evaluation of peripheral vertigo: an observational vertigo

Mahadev Sarkar^{1*}, Dipjyoti Barman², Sunaina Shekhawat³

¹Department of Otorhinolaryngology, Silchar Medical College, and Hospital, Silchar, Assam, India

Received: 04 August 2024 **Accepted:** 17 Septemebr 2024

*Correspondence: Dr. Mahadev Sarkar,

E-mail: mahadevsarkarbampara@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Vertigo (internal) refers to the perception of self-motion even when there is no actual movement or the perception of distorted self-motion during normal motion of the head. Approximately 6.5% of individuals may encounter peripheral vestibular issues at some stage during their lifetimes.

Methods: All patients attending the outpatient department of ENT and SMCH with the chief complaint of vertigo or dizziness had been subjected to a general physical examination, local examination of the ear, nose, and throat, examination of the vestibular system, postural tests, and cerebellar function tests. Pure Tone Audiometry, VNG (Videonystagmography), and radiological investigations as per requirement.

Results: The study included 38 patients diagnosed with peripheral vertigo throughout the course of one year. Benign Paroxysmal Positional Vertigo (BPPV) was the most common condition (60.5%), followed by Meniere's disease (7.9%) and acute vestibular neuritis (13.2%). Chronic Bilateral vestibulopathy, persistent perceptual postural dizziness (PPPD), and mobile third window phenomenon were less prevalent.

Conclusions: This study concludes that early diagnosis and appropriate treatment can prevent peripheral vertigo, which is more common in the elderly population and compromises their quality of life.

Keywords: BPPV, Meniere's disease, Peripheral vertigo, PPPD, Prevalence of peripheral vertigo, Vestibular neuritis

INTRODUCTION

Vertigo (internal) refers to the perception of self-motion even when there is no actual movement or the perception of distorted self-motion during a regular movement of the head. The symptoms of peripheral vertigo can occur spontaneously or be provoked by a variety of circumstances, depending on the underlying cause of the illness. About 6.5% of people will experience peripheral vestibular problems at some point in their lives. In the emergency department (ED), peripheral vestibular diseases are typically misdiagnosed or mistreated, with rates reported to be between 74% and 81%. People frequently misdiagnose diseases like vestibular neuritis and benign paroxysmal positional vertigo (BPPV) as

more serious central causes like stroke, and they can also confuse them with one another.³⁻⁵ The management is not optimal and not grounded in evidence.^{4,5} Proper clinical history-taking and bedside examinations can well differentiate between peripheral vertigo and vertigo of central origin. In acute vestibular syndrome, a normal horizontal head impulse test, abnormal skew deviation (vertical ocular misalignment), or direction-changing nystagmus in eccentric gaze were jointly determined to be 100% sensitive and 96% specific for stroke in comparison to early MRI.⁶

There are several reasons why proper diagnosis of peripheral vestibular problems should be taken seriously. A proper clinical evaluation and oculographic

²Department of Otorhinolaryngology, Gauhati Medical College and Hospital, Guwahati, Assam, India

³Department of Otorhinolaryngology, Dhubri Medical college and Hospital, Dhubri, Assam, India

examination can save the time, money, and life of the patients rather than waiting for sophisticated radiological and other imaging studies to rule out the central causes of vertigo.6 The Dix-Hallpike test and the other effective canalith repositioning procedure are recommended by systematic studies and clinical guidelines for BPPV, which is the most common peripheral vestibular disorder.⁷ Comprehensive history-taking and clinical examination generally distinguish peripheral vertigo, including conditions like Meniere's disease, vestibular neuritis, and labyrinthitis. In some instances, further investigations may be necessary to aid in the diagnosis. The primary factors contributing to vertigo are vestibular migraine, vertebrobasilar insufficiency, posterior fossa stroke, cerebellopontine angle tumours, multiple sclerosis, and episodic ataxia. These factors are less prevalent compared to peripheral causes. Bedside procedures have the potential to serve as a quick and inexpensive alternative to current treatment methods in a time when both efficiency and cost reduction are of utmost importance.6 In study centre, author used the videonystagmography tool for the oculography tests and to help in the early differentiation of central and peripheral vertigo. We have aimed to study the clinical presentations, the role of history taking, clinical neurootological tests, laboratory tests in diagnosing peripheral vertigo, and management of the respective cause of peripheral vertigo with the available line of treatment for the same.

METHODS

The study was conducted for a duration of one year, spanning from February 2022 to February 2023, at the ENT Head & Neck department at SMCH. We provided a detailed explanation of the study to all participants and obtained their informed consent. The study protocol received approval from the institutional ethics committee. All patients visiting the outpatient department of ENT (SMCH) with the main complaint of vertigo or dizziness had a comprehensive evaluation, including a general physical examination, a thorough examination of the ear, nose, and throat, an assessment of the vestibular system, postural tests, and tests to evaluate cerebellar function. Pure tone audiometry, VNG (videonystagmography), and radiological investigations as per requirement. All patients were first examined for central vestibular disorders, especially to look for stroke, and for that, we used the HINTS examination system with the other cerebellar signs. Patients with a negative head impulse test, spontaneous direction-changing non-fatigable nystagmus without suppression of visual fixation, and skew deviation were referred to the Department of Medicine, SMCH, for further evaluation of a stroke or posterior fossa lesion. All the patients with a history consistent with peripheral vertigo were evaluated with positional diagnostic manoeuvres for positional vertigo patients. Fukuda's stepping test, modified Romberg test, caloric test, and pure tone audiometry, along with the result of HINTS, were used for the diagnosis of vestibular neuritis and labyrinthitis. The patients with inconclusive clinical interpretations about the canal involvement of patients with BPPV were further evaluated with videonystagmography. After the final diagnosis of the patients, they were treated with the currently recommended treatment regimen.

RESULTS

A total of 38 patients were included (undiagnosed patients were excluded from the analysis, which was 11 in number) in our study after being diagnosed with a cause of peripheral vertigo during a one-year period from February 2022 to February 2023, with a median age of 52 years (ranging from 18 to 87 years). Out of 38, 23 were male and 15 were female. In our study, 23 patients were diagnosed with BPPV, 03 with Meniere's disease, 05 with acute unilateral vestibular neuritis, 03 with PPPD, 02 with chronic bilateral vestibulopathy, and 02 with the third mobile window phenomenon.

Table 1: Showing the epidemiological distribution of cases.

Name of diseases		No. of cases	Prevalence
BPPV		23	60.5
PC-BPPV		13	34
HC-	Canalolithiasis	04	10.5
BPPV Total=07	Cupulolithiasis	03	7.9
AC-BPPV		03	7.9
Acute vestibular neuritis		05	13.2
Meniere's disease		03	7.9
PPPD		03	7.9
Chronic bilateral vestibulopathy		02	5.3
Mobile third window phenomenon		02	5.3

Out of 23 BPPV patients (median age: 46 years, ranging from 18 to 87 years), 14 were male and 09 were female, among which 13 were posterior canal BPPV with only one patient involving the left side, 03 were anterior canal BPPV (both left and right were found equally involved), and 07 were horizontal canal BPPV (on the right side, 03 patients and on the left side, 04 patients were found).

We diagnosed 05 patients with acute vestibular neuritis with a median age of 51 years (42-55 years), among which 03 had pure superior vestibular neuritis and 02 had total vestibular neuritis. We found no patients with pure inferior vestibular neuritis. Out of 5 patients, 3 were male and 2 were female.

Out of 3 patients with Meniere's disease, 2 were unilateral and one was bilateral; all three patients were over 60 years of age.

Out of 2 patients in the third mobile window, both were male; one was diagnosed with a peri-lymphatic fistula on the left side and superior semicircular canal dehiscence on the right side.

Two patients were diagnosed with chronic bilateral vestibulopathy, one female and one male; both were over 70 years of age.

Three patients were diagnosed with persistent perceptual postural dizziness, with a median age of 58 years; two were male and one was female.

DISCUSSION

In India, life expectancy has increased from 56 to 70 years in the last 40 years, indicating a larger elderly population. As the incidence of dizziness increases with age, our study in this era will help to identify any new trends in the distribution of patients with peripheral vertigo.

The most common age group in our study was 51-60 years, which is like the study by Raman et al and Neuhauser et al, but differs from the studies by Bhatia et al and Gopal et al, where the most common age group was 30-40 years. ^{11,16,20,21}

Staibano et al found that 66.4% of the patients were male. 12 Yin et al conducted clinical epidemiologic research on vertigo and discovered that 59.28% of the 2,169 patients were male. 13 Bittar et al conducted a study in Sao Paulo to examine the occurrence of dizziness. They found that out of 1,960 patients, 53% were male. 14 The findings of all these studies coincide with our study, in which we found a male predominance of 60.5% of the total sample but Katsarkas found a female predominance with 62.81% of prevalence in females. 19

In our study, the distribution of patients according to aetiology was as follows: 60.5% BPPV, 13.2% acute vestibular neuritis, 7.9% Meniere's disease, and 18.4% others. This was comparable with the studies done by Raman et al, Hulse et al, and Yin et al. 13,15,20 In the research done by Yin et al, it was shown that BPPV is the predominant peripheral cause, followed by vestibular neuritis and Meniere's illness as the second and third most prevalent causes, respectively.

Meniere's disease is the primary cause of peripheral vertigo, making up 23.0% of cases, as found in investigations done by Muelleman et al and Bhatia et al. 18,21 Muelleman et al found that vestibular migraine and BPPV occur at a rate of 19.1% each. 18 Neupane et al conducted research that revealed that vestibular migraine is the primary cause of vertigo, with a prevalence rate of 36%. 17 BPPV follows closely at 35%, while Meniere's disease is at 8%. PPPD, vestibular neuritis, and seizures account for 5%, 2%, and 2%, respectively. 4% of cases

exhibited a central cause, whereas 8% remained unidentified.

In our study, the occurrence rate of posterior canal BPPV is 56.5%, horizontal canal BPPV is 30.4%, and anterior canal BPPV is 17.1%. These rates align with the majority of existing literature on the subject. Our study's findings regarding the canal's involvement pattern are consistent with those of Swain et al's study.²² However, Seok et al reported that the horizontal canal BPPV was the most prevalent, accounting for 57.1% of cases in a sample size of 49.²³ The posterior canal and anterior canal were involved in 38.8% and 2.0% of cases, respectively.

CONCLUSION

Our study concludes that the most common age group affected by peripheral vertigo is 51–60 years. This means that the prevalence of vertigo is higher towards the later stage of life, which has the capability to compromise the quality of life in elderly people. The most frequent causes of peripheral vertigo in our study area are benign positional paroxysmal vertigo, vestibular neuritis, and Meniere's disease.

ACKNOWLEDGEMENTS

Authors would like to thank the principal of the Silchar Medical College and Hospital, Silchar and Head of the department of ENT and Head & Neck surgery, SMCH for allowing to carry out the study in this institute.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee of Silchar medical College, Silchar, Assam

REFERENCES

- Bisdorff A, Von Brevern M, Lempert T, Newman-Toker DE. Classification of vestibular symptoms: towards an international classification of vestibular disorders. J Vestib Res. 2009;19(1-2):1-3.
- 2. Hülse R, Biesdorf A, Hörmann K, Stuck B, Erhart M, Hülse M, et al. Peripheral vestibular disorders: an epidemiologic survey in 70 million individuals. Otol Neurotol. 2019;40(1):88-95.
- 3. Kerber KA, Morgenstern LB, Meurer WJ, McLaughlin T, Hall PA, Forman J, et al. Nystagmus assessments documented by emergency physicians in acute dizziness presentations: A target for decision support? Acad Emerg Med. 2011;18(6):619-26.
- 4. Royl G, Plones CJ, Leithner C. Dizziness in the Emergency room: diagnoses and misdiagnoses. Eur Neurol. 2011;66(5):256-63.
- Newman-Toker DE, Camargo, Jr CA, Hsieh YH, Pelletier AJ, Edlow JA. Disconnect between charted vestibular diagnoses and emergency department

- management decisions: a cross-sectional analysis from a nationally representative sample. Acad Emerg Med. 2009;16(10):970-7.
- Kattah JC, Talkad AV, Wang DZ, Hsieh YH, Newman-Toker DE. HINTS to diagnose stroke in the acute vestibular syndrome: three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke. 2009;40(11):3504-10.
- 7. Bhattacharyya N, Baugh RF, Orvidas L, Barrs D, Bronston LJ, Cass S, et al. Clinical practice guideline: benign paroxysmal positional vertigo. Otolaryngol Head Neck Surg. 2008;139(5_suppl):47-81.
- 8. Kerber KA, Burke JF, Skolarus LE, Meurer WJ, Callaghan BC, Brown DL, et al. Use of BPPV processes in emergency department dizziness presentations: a population-based study. Otolaryngol Head Neck Surg. 2013;148(3):425-30.
- Von Brevern M, Radtke A, Lezius F, Feldmann M, Ziese T, Lempert T, et al. Epidemiology of benign paroxysmal positional vertigo: a population based study. J Neurol Neurosurg Psych. 2007;78(7):710-5.
- 10. Hilton MP, Pinder DK. The Epley (canalith repositioning) manoeuvre for benign paroxysmal positional vertigo. Cochr Datab System Rev. 2014;(12):CD003162.
- 11. Gopal GS. Peripheral vertigo: An assessment. Ind J Otolaryngol. 1991;43:161-2.
- 12. Staibano P, Lelli D, Tse D. A retrospective analysis of two tertiary care dizziness clinics: a multidisciplinary chronic dizziness clinic and an acute dizziness clinic. J Otolaryngol-Head N. 2019;48(1):1.
- 13. Yin M, Ishikawa K, Wong WH, Shibata Y. A clinical epidemiological study in 2169 patients with vertigo. Auris Nasus Larynx. 2009;36(1):30-5.
- Bittar RS, Oiticica J, Bottino MA, Ganança FF, Dimitrov R. Population epidemiological study on the prevalence of dizziness in the city of São Paulo. Braz J Otorhinolaryngol. 2013;79:688-98.

- 15. Hülse R, Biesdorf A, Hörmann K, Stuck B, Erhart M, Hülse M, et al. Peripheral vestibular disorders: an epidemiologic survey in 70 million individuals. Otol Neurotol. 2019;40(1):88-95.
- 16. Neuhauser HK, Von Brevern M, Radtke A, Lezius F, Feldmann M, Ziese T, et al. Epidemiology of vestibular vertigo: a neurotologic survey of the general population. Neurol. 2005;65(6):898-904.
- 17. Neupane Y, Adhikari S, Sarita KC, Dutta H. Profile of patients presenting with vertigo at a tertiary vertigo referral centre in Nepal. Nepal J ENT Head Neck Surg. 2019;10(2):3-7.
- 18. Muelleman T, Shew M, Subbarayan R, Shum A, Sykes K, Staecker H, et al. Epidemiology of dizzy patient population in a neurotology clinic and predictors of peripheral etiology. Otol Neurotol. 2017;38(6):870-5.
- 19. Katsarkas A. Dizziness in ageing: a retrospective study of 1194 cases. Otolaryngol Head Neck Surg. 1994;110(3):296-301.
- Abrol R, Nehru VI, Venkatramana Y. Prevalence and etiology of vertigo in adult rural population. Indian J Otolaryngol Head Neck Surg. 2001;53(1):32-6.
- 21. Bhatia R, Deka RC. Clinical profile of cases with vertigo. Indian J Otolaryngol. 1985;37:144-6.
- Swain S, Behera IC, Sahu MC. Prevalence of Benign Paroxysmal Positional Vertigo: Our experiences at a tertiary care hospital in India. Egyptian J Ear Nose Throat Allied Sci. 2018;19(3):87-92.
- 23. Seok JI, Lee HM, Yoo JH, Lee DK. Residual dizziness after successful repositioning treatment in patients with benign paroxysmal positional vertigo. J Clin Neurol. 2008;4(3):107-10.

Cite this article as: Sarkar M, Barman D, Shekhawat S. Evaluation of peripheral vertigo: an observational vertigo. Int J Res Med Sci 2024;12:3751-4.