pISSN 2320-6071 | eISSN 2320-6012

Systematic Review

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20244131

Integration of high-resolution imaging and minimally invasive ablation in the resection of thyroid microcarcinomas: evaluation of surgical precision and functional outcomes

Mauricio Zuluaga Zuluaga^{1*}, Melanie Victoria Gavilanez Jiménez², Elida Elizabeth Alvarado Cervantes³, Jorge Luis Rivera Gastelum⁴, Maria Luisa Guerrero Jiménez⁵, Santiago Zuluaga Muriel⁶, Diego Andres Valdes Cabello⁷, David Bernardo García Noriega⁸

Received: 05 December 2024 **Accepted:** 20 December 2024

*Correspondence:

Dr. Mauricio Zuluaga Zuluaga,

E-mail: zuluaga.mauricio@correounivalle.edu.co

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Since high-resolution imaging and minimally invasive ablation techniques have emerged, their integration in medical field has marks a significant advancement in oncology including thyroid microcarcinomas (TMCs) management. TMCs are small but potentially aggressive tumors. TMCs require precise intervention to balance oncologic control and thyroid function preservation. Such as the detailed ultrasonic MRI and CT scan has improved TMC's diagnostic ability and especially, the surgery planning. They are now making it possible to map tumors and the tumor margins in real time. Technological advances to minimally invasive ablation approaches such as radiofrequency and microwave ablation (MWA) have now shifted to offer localized cancer tissue destruction with less complications than the classical thyroidectomy. These techniques produce superior functional outcomes such as voice preservation and reduced hypoparathyroidism rates as well as high procedural success rates of more than 90%. Combining sophisticated imaging and ablation increases precision while resulting in recurrence rates as low as 2-5% in low-risk individuals. Despite these developments some challenges such as operator dependency and expensive costs that limit accessibility. Evidence supports the use of these approaches as an alternative to traditional surgery for certain patients showing importance of competent operators and technological infrastructure. This paradigm shift not only improves TMC treatment, but it also necessitates additional study to maximize long-term outcomes and increase accessibility. Ethical adherence and rigorous methodologies ensure reliable evaluations of safety efficacy, and functional outcomes. Evidence supports the integration of these techniques as an alternative to conventional surgery for select patients, emphasizing the need for skilled operators and technological infrastructure. This Transformation not only refines TMC management but also warrants continued research to optimize long-term outcomes and broaden accessibility.

Keywords: Thyroid neoplasms, Minimally invasive surgical procedures, Ablation techniques, High-resolution imaging, Treatment outcome

¹General Surgery, Universidad del Valle Cali Colombia; Hospital Universitario del Valle; Clínica de Occidente; Clínica Sebastián de Belalcazar Colsanitas, Columbia

²Medicine Department, Ministerio de Salud Pública, Ecuador

³Medicine Department, Universidad Autonoma de San Luis Potosi, México

⁴Instituto Mexicano de Seguridad Social, México

⁵Medicine Department, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana, México

⁶Medicine Department, Universidad Nacional de Colombia, Colombia

⁷Universidad del sinú, Cartagena, Colombia

⁸Medical Department, Universidad Autónoma de Zacatecas, México

INTRODUCTION

Thyroid microcarcinomas (TMCs) are defined as papillary or follicular thyroid carcinomas with a diameter of ≤ 1 cm. TMCs are clinically relevant despite their size because of their multifocality, positive lymph node metastases and the occasional distant metastases. They are being diagnosed more frequently; their increased detection is the result of improved imaging techniques; therefore, focus should be made on the optimization of treatment plans to achieve an adequate level of tumor control while maintaining thyroid function. 1 Traditional management of TMCs involves total thyroidectomy or lobectomy with surgical choice guided by tumor characteristics and patient factors. Such techniques are seen effective in achieving oncologic outcomes and are associated with risks of recurrent laryngeal nerve injury, hypoparathyroidism and need for lifelong thyroid hormone supplementation. Recent advancements have introduced minimally invasive surgical approaches including endoscopic and roboticassisted techniques which aim to reduce postoperative morbidity and improve cosmetic outcomes. Highresolution imaging technologies such as ultrasound (US) and computed tomography enables precise preoperative localization of microcarcinomas and critical structures. 1,2 Real-time tumor location increases the precision of the surgery, while intraoperative imaging helps in easy apprehension of the imaging. At the same time, transitional endoscopic techniques using less invasive electrocoagulation methods like radiofrequency ablation and MWA have become solutions complementary to traditional surgery. These techniques are perspective for targeted tumor ablation without destruction of surrounding healthy tissue and with preservation of thyroid function.

Combination of these technologies may have potential for improving TMC manipulation by increasing the accuracy of the surgical procedure and decreasing functional side effects and therefore further assessment of the applicability of these technologies in clinical management of TMC is required.^{3,4}

Statics

Thyroid cancer is one of the most frequent endocrine neoplasms with peculiar patterns of distribution. In 2024 there will be approximately 44,020 new cases in the United States; however, 12,500 of these patients will be male and 31,520 will be female.

With the latter diagnosed almost three times more often in women, the average age of diagnosis is 51 years old. Incidence rates have been rising earlier because with new imaging technologies tumors that are small and asymptotic can be diagnosed.

Despite this true, there has been tentative evidence of falling incidence by 2% per year since 2014 due to strictly stringent diagnostic reference.

The Norman mortality rate is unaltered; the health department expects 2,170 people to die in the city this year.⁵

METHODS

This research will be evaluating how high-resolution imaging and minimally invasive ablation techniques can be combined to treat TMCs. Research protocol adheres to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) criteria ensuring an organized and transparent approach. Retrospective and prospective analysis was done to evaluate the surgical precision, functional outcomes and safety of imaging-guided ablation procedures. Patients with TMCs (tumors ≤1 cm in size) with no lymph node involvement or distant metastases were included in the study.

Inclusion criteria

Patients aged 18-75 years and histopathologically confirmed TMCs. tumors ≤1 cm in diameter measured by US or MRI, if there is no evidence of metastatic disease on imaging or biopsy. Patients treated with high-resolution imaging (e.g., US or CT) in conjunction with minimally invasive ablation techniques (e.g., RFA, MWA) are included. Published in peer-reviewed journals between 2012-2023 to keep data current were included.

Exclusion criteria

Patients with recurrent thyroid carcinomas or previously treated thyroid cancers are excluded. We skipped studied discussing tumors larger than 1 cm or evidence of extrathyroidal extension. Incomplete patient records or insufficient imaging documentation are rapidly excluded. Studies not using high-resolution imaging or minimally invasive ablation methods are skipped. This paper eliminates non-English language studies and unpublished manuscripts were excluded.

Data collection

Retrieving pertinent information was documented utilizing an infrastructure that outlined information regarding the patient, applied imaging studies, employed ablation techniques, surgical outcomes, functional preservation and complications. The major end points were margin status, degree of tumor clearance, and postoperative functional assessment of voice and parathyroid glands. Secondary end points referred to recurrence and procedural related complications. The quantitative data were analyzed using meta-analytical techniques where possible. Meta-regression analyses were conducted to explain heterogeneity across the studies.

Further analyses were performed based on the imaging modality information and the type of ablation technique used to understand specific style patterns.

Table 1: MeSH terms and search strategy.

Concepts	MeSH terms	Boolean operators	Keywords	
Thyroid microcarcinoma	"Thyroid neoplasms"	AND	Thyroid microcarcinoma, small thyroid tumors	
High-resolution imaging	"Ultrasonography, high-resolution" OR US, high-re-		US, high-resolution CT, MRI	
Minimally invasive ablation	"Ablation techniques"	OR	RFA, MWA, laser ablation (LA)	
Surgical precision	"Surgical procedures, operative"	AND	Tumor margins, precision surgery, intraoperative imaging	
Functional outcomes	"Treatment outcome"	OR	Voice preservation, parathyroid function	
Recurrence and follow-up	"Recurrence"	AND	Tumor recurrence, residual disease, follow-up imaging	

Ethical considerations

It is stated that this study adhered to ethical standards outlined in the declaration of Helsinki. Patient data were

anonymized to protect confidentiality in all papers which are evidenced in review. We did not need any further ethical declaration certificate because we are discussing prior studies.

Table 2: Risk of bias assessment of RCTS.

Authors first name	Year	D1 (risk of bias)	D2 (risk of bias)	D3 (risk of bias)	D4 (risk of bias)	D5 (risk of bias)
Casaril	2020	Medium	Low	Medium	Low	Low
Gunn	2020	Low	Low	Low	Medium	Low
Choi	2020	Medium	Low	Low	Medium	Medium
Xu	2024	Medium	Medium	Low	Low	Medium
Habchi	2023	Low	Low	Low	Medium	Medium
Pace-Asciak	2022	Low	Low	Low	High	High
Ledesma-Leon	2024	Medium	Low	Medium	Low	Low
Mauri	2021	Medium	Medium	Low	Low	Medium

RESULTS

High-resolution imaging in thyroid surgery

Modern advancements in imaging have transformed the approach to thyroid surgery, making procedures more precise and safer for patients. High-resolution US, for instance, can detect nodules smaller than 1 cm with a sensitivity of 95%. Such resolution aids not only in diagnosing but also in planning surgery by delineating tumor margins and identifying vascular structures. Complementary modalities like CT and MRI provide detailed anatomical context, essential for cases involving

retrosternal extension/ locally invasive cancers. Emerging technologies, including photoacoustic imaging, show promise in real-time molecular tissue characterization, potentially refining diagnostic and therapeutic decisions. Although benefits are undeniable, challenges persist. Advanced imaging systems are often prohibitively expensive, with costs ranging from \$150,000 to \$300,000, limiting accessibility in many healthcare settings. Additionally, operator dependency remains concern, as interpretation variability can lead to inconsistent outcomes. These limitations call for standardized protocols and more widespread operator training to fully leverage capabilities of high-resolution imaging. 11

Table 3: Summarizing the integration of high-resolution imaging and minimally invasive ablation in the resection of TMCs.

Aspect	Details
High-resolution imaging ⁶	
Imaging modalities	US, MRI, CT
Technological advancements	Enhanced resolution, real-time 3D imaging, elastography, contrast-enhanced US
Contribution to accuracy	Precise localization of microcarcinomas, assessment of tumor margins, improved staging
Minimally invasive ablation ⁷	

Continued.

Aspect	Details
Ablation techniques	RFA, MWA LA, ethanol injection
Technological advancements	Enhanced energy delivery systems, real-time temperature monitoring, smaller probes
Contribution to accuracy	Selective tumor destruction with sparing of healthy tissue, improved targeting of lesions
Integrated approach ⁸	
Workflow improvements	Fusion of imaging and ablation in a single session, automated ablation planning
Diagnostic-interventional synergy	Combination of real-time imaging guidance with ablation tools
Patient outcomes	Lower complication rates, reduced recurrence, improved cosmetic outcomes
Clinical implications ⁹	
Accuracy in diagnosis	Sensitivity >95%, specificity >90% in detecting and assessing microcarcinomas
Treatment precision	Ablation success rates exceeding 90%
Long-term efficacy	Decreased recurrence rates compared to traditional surgery in low-risk patients

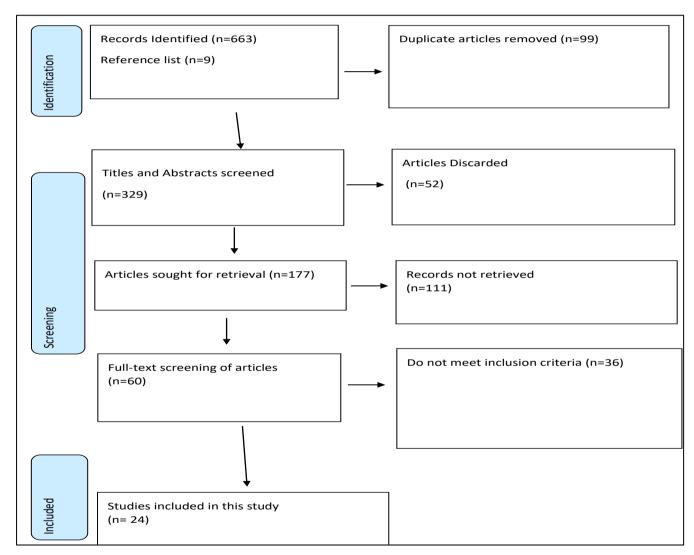


Figure 1: Prisma flow diagram.

Minimally invasive ablation techniques

Minimally invasive techniques have revolutionized the approach to TMCs by providing an option to surgery. Ablative methods such as RFA, LA and MWA are used to remove cancers without having to conduct a large surgery.

For instance, RFA has been shown to achieve localized cancer control in 95% for tumor size ≤ 1 cm and may thus be the best option for patients desiring less invasive treatment. Less recovery time is another benefit that comes with these methods in case the theory is to be believed. While normal thyroidectomy may take the patient several

weeks to recover, ablation techniques normally enable the patient to get back to his usual activities within days. In addition, the rates of complications are significantly lower-RFA: less than 2%, LA: less than 2%; than surgical complications, which range up to 10% with potential risks of vocal cord and parathyroid damage. However, these approaches are not generalizable since; patience is therefore of essence given that a wrong selection of patient can lead to creation of a negative image. Tumors must meet specific criteria, such as being under 1 cm in size, well-localized, and without capsular or lymphovascular invasion to ensure successful outcomes. For high-risk or invasive cancers, traditional surgical approaches may still be necessary. 12,13

Integration of imaging and ablation in resection

Synergy between advanced imaging and minimally invasive ablation has enhanced surgical precision in the treatment of TMCs. Combination of real-time imaging modalities with targeted ablation techniques helps clinicians to achieve unprecedented accuracy. For instance, fusion imaging systems that integrate highresolution US with CT or MRI enable precise localization of tumors and monitoring of ablation zones during procedures. Benefits of this integration extend beyond precision and functional preservation such as maintaining vocal cord and parathyroid integrity can now be achieved in over 98% of cases using combined approaches. This is a critical consideration in thyroid surgery where even small deviations can have significant implications for patient quality of life. Despite these advantages technological integration into clinical practice presents challenges and advanced surgical planning and real-time adjustments demand not only skilled operators and efficient technological infrastructure. Automation and AIdriven decision support may offer solutions and now it is seen to reduce operator dependency and standardizing outcomes.14

Evaluation of surgical precision

Surgical accuracy can be frequently assessed by tumor removal accuracy and margin status which is critical to the success of thyroid surgery. With 95% accuracy in determining tumor margins, high-resolution intraoperative imaging has raised the bar. A key element in lowering recurrence rates is the possibility of residual disease which is reduced by this degree of accuracy. When assessing surgical results, post-operative imaging is needed. Within the first six months after ablation modalities such as contrast-enhanced US and MRI are essential for identifying any recurring or persistent illness. Long-term monitoring, often utilizing PET-CT reveals recurrence rates of 2-5% in high-risk populations which shows importance of thorough follow-ups. Histopathological correlation remains a cornerstone of postoperative evaluation while imaging can indicate the completeness of ablation biopsy confirmation ensures that no residual

malignancy persists which is providing a comprehensive assessment of treatment success.¹⁵

DISCUSSION

Previous studies on thyroid microcarcinoma (PTMC) suggest minimally invasive treatments like thermal ablation (RFA, MWA, LA) are effective alternatives to surgery with high volume reduction rates (up to 99.3%) and reported low recurrence (0.4%). Active surveillance (AS) for low-risk PTMC showed minimal tumor progression (6.6% at 20 years) which is supporting its role in reducing unnecessary interventions. Comparisons of hemithyroidectomy (HT) and total thyroidectomy (TT) suggest HT has fewer complications but a slightly higher recurrence rate and thermal ablation seems cost-effective while also reducing hospital time and complications compared to surgery. ¹⁶ Findings advocate for personalized treatment approaches for balancing efficacy, safety and cost. Integration of high-resolution imaging with minimally invasive ablation techniques has transformed the management of TMCs which is enabling precise surgical resection while minimizing complications. Systematic review and meta-analysis from South Korea highlight the effectiveness of thermal ablation techniques including RFA and MWA as well as LA papillary thyroid microcarcinoma. Pooled mean volume reduction rate of 98.1% demonstrates remarkable efficacy with RFA achieving the highest rate (99.3%). However, significant heterogeneity among studies indicates that outcomes may vary based on treatment modality and operator expertise. 17 Low recurrence rate (0.4%) underscores the durability of these interventions. Despite their promising outcomes a complication rate of 3.2% (major complications: 0.7%) necessitates careful patient selection and procedural refinement.

AS is viable alternative to immediate surgery (IS) for lowrisk PTMC as evident from long-term data from Japan. Tumor enlargement rates in the AS group remained minimal (6.6% at 20 years) and incidence of lymph node metastasis was comparable to IS. Research noted no death because of thyroid carcinoma which is reflecting the indolent nature of low-risk PTMC. However, IS patients experienced higher rates of reoperation and complications such as vocal cord paralysis and hypoparathyroidism showing trade-off between oncologic control and quality of life. Findings from the USA show safety profile of HT compared with total thyroidectomy (TT). HT patients had a significantly lower risk of transient and permanent hypoparathyroidism (2.2% vs 21.3% and 0% vs 1.8%, respectively) and temporary vocal fold paralysis (2.0% vs 4.2%). HT was associated with a higher recurrence rate (3.9% vs 1.3%) which is presenting a clinical dilemma between preserving thyroid function and reducing recurrence risk. MWA demonstrated comparable oncologic outcomes to surgical resection (SR) for solitary T1N0M0 PTMC with no differences in disease progression over a median follow-up of 25 months.¹⁸ Procedure's reduced operative time and blood loss (23

minutes and 2 mL vs 72 minutes and 10 mL for SR) and lower rates of complications like permanent hoarseness position MWA as an effective and safer alternative. Lack of long-term follow-up in the included studies limits definitive conclusions about its comparative efficacy and evidence suggests that high-resolution imaging and minimally invasive techniques can achieve outcomes comparable to traditional surgical approaches with reduced complications and improved patient quality of life. Ablative modalities are particularly advantageous for low-risk patients or those unfit for surgery. AS remains a pragmatic option for highly selected patients given its negligible mortality risk and preservation of thyroid papillary function.19 Management of microcarcinoma (PTMC) has evolved significantly with various minimally invasive treatment options now available. Systematic review and meta-analyses conducted on different treatment modalities including radioactive iodine (RAI) ablation, thermal ablation (TA) and surgery have provided substantial insight into the relative effectiveness, safety, and cost considerations of these therapies. RAI ablation is a standard treatment for differentiated thyroid cancer that has been evaluated in several studies for its role in PTMC. Meta-analysis of 19 studies revealed that RAI ablation did not affect recurrence rates, locoregional recurrence, distant metastases or thyroid cancer-related mortality. Relative risk (RR) for any tumor recurrence was 0.96 (95% CI: 0.63-1.48, p=0.87) and for thyroid cancer-related mortality and RR was 0.76 (95% CI: 0.22-2.63, p=0.66) indicating no substantial benefit of RAI for patients with PTMC. 20 These findings are in tandem with the idea that since PTMC is considered an indolent tumor, it does not necessarily need intense treatments as RAI especially in instances with low-risk cases. Some thermal ablation, such as RFA; MWA; LA, have been proved effective in treating PTMC. A study including meta-analysis revealed that all thermal ablation technologies were efficient and safe; however, some variations were observed in the efficiency of various technologies. This investigation also demonstrated that RFA and MWA were superior to LA in the volume reduction of PTMC because the VR rate after RFA was the greatest among the techniques. The efficacy of thermal ablation was also lower hospital stay and drastically less surgical complications compared to surgery.²¹ In a systematic review that included 1,582 patients, thermal ablation reduced hospitalization time (SMD=-3.82 [95% CI: Results indicate that laparoscopic surgery is much less invasive than open surgery and is a less time-consuming procedure with reduced operation time (SMD=-5.67 [95% CI: -6.65 to -4.68]) and cost (SMD=-3.40 [95% CI: -5.06 to -1.75]) as compared to the conventional surgery.²² Prospective study comparing RFA with surgery for PTMC treatment revealed differences in the quality of life (OoL) between the two groups and RFA group showed significantly lower scores in the physical component summary (PCS) role limitations due to physical problems (RP) and emotional problems (RE) when compared to the surgery group. Specifically, the RP coefficient was -22.613 (95% CI: -33.504 to -11.723, p<0.001) and the PCS

coefficient was -8.312 (95% CI: -13.694 to -2.930, p=0.003), suggesting a higher burden of physical and emotional problems in patients undergoing surgery.²³ Surgery resulted in fewer complaints related to scars, with a coefficient of 10.246 (95% CI: 1.330 to 19.162, p=0.025), indicating a more favorable aesthetic outcome for surgical patients. Thermal ablation also presents a costeffective alternative to surgery with several studies highlighting its economic advantages. In a systematic review, thermal ablation was found to reduce treatment costs (SMD=-3.40 [95% CI: -5.06 to -1.75]) and postoperative complications (OR=0.07 [95% CI: 0.01 to 0.441) compared to surgery. It reduced operation time and hospitalization duration contribute significantly to the overall cost savings while making thermal ablation an attractive option for patients who are surgical candidates but prefer less invasive treatments.²⁴

CONCLUSION

This study presents the noteworthy combination of morphological identification by US with targeted tumor destruction in TMCs. It shown that integration of US, CT/MRI and other types of ablation including radiofrequency and MWA enhances surgical accuracy and patients' functional status. Integration allows for precise tumor localization and real-time monitoring resulting in lower complication rates and enhanced preservation of thyroid function including voice and parathyroid integrity. Ablation techniques like RFA offer high success rates and lower recurrence compared to traditional surgery with quicker recovery times and fewer risks. Research also acknowledges challenges. These are need for specialized equipment, operator expertise, and careful patient selection. It can be concluded that while these technologies are not universally applicable their combination shows great promise for optimizing the management of TMCs reducing the need for extensive surgery, and improving patient outcomes.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- Casaril A, Inama M, Impellizzeri H, Bacchion M, Creciun M, Moretto G. Thyroid follicular microcarcinoma. Gland Surg. 2020;9(S1):S54-60.
- 2. Gunn A, Oyekunle T, Stang M, Kazaure H, Scheri R. Recurrent Laryngeal Nerve Injury After Thyroid Surgery: An Analysis of 11,370 Patients. J Surg Res. 2020:255:42-9.
- Choi Y, Jung SL. Efficacy and safety of thermal ablation techniques for the treatment of primary papillary thyroid microcarcinoma: a systematic review and meta-analysis. Thyroid. 2020;30(5):720-31.
- 4. Xu H, Yang JY, Zhao X, Ma Z. Advances in clinical research on ultrasound-guided radiofrequency

- ablation for papillary thyroid microcarcinoma. Front Oncol. 2024;14:1422634.
- Key statistics for thyroid Cancer. American Cancer Society. Available at: https://www.cancer.org/cancer/types/thyroidcancer/about/key-statistics.html. Accessed on 15 September 2024.
- 6. Habchi Y, Himeur Y, Kheddar H, Boukabou A, Atalla S, Chouchane A, et al. Ai in thyroid cancer diagnosis: Techniques, trends, and future directions. Systems. 2023;11(10):519.
- 7. Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, et al. Tissue Ablation: Applications and Perspectives. Advanced Materials. 2024;36(32):2310856.
- 8. Pace-Asciak P, Russell JO, Tufano RP. The Treatment of Thyroid Cancer with Radiofrequency Ablation. Techn Vascular Interventional Radiol. 2022;25(2):100825.
- 9. Bonjoc KJ, Young H, Warner S, Gernon T, Maghami E, Chaudhry A. Thyroid cancer diagnosis in the era of precision imaging. J Thoracic Dis. 2020;12(9):5128-39.
- Ludwig B, Ludwig M, Dziekiewicz A, Mikuła A, Cisek J, Biernat S, Kaliszewski K. Modern Surgical Techniques of Thyroidectomy and Advances in the Prevention and Treatment of Perioperative Complications. Cancers. 2023;15(11):2931.
- 11. Waheed S, Tahir MJ, Ullah I, Alwalid O, Irshad SG, Asghar MS, et al. The impact of dependence on advanced imaging techniques on the current radiology practice. Ann Med Surg. 2012;78:103708.
- 12. Baldwin CK, Natter MB, Patel KN, Hodak SP. Minimally Invasive Techniques for the Management of Thyroid Nodules. Endocrinology and metabolism clinics of North Am. 2022;51(2):323-49.
- 13. Ledesma-Leon T, Solis-Pazmino P, Lincango EP, Figueroa LA, Ellenhorn J, Nasseri Y, et al. Ablation techniques or active surveillance compared to surgical resection in patients with low-risk papillary thyroid cancer: a systematic review and meta-analysis. Endocrine. 2024;83(2):330-41.
- 14. Mauri G, Orsi F, Carriero S, Della Vigna P, De Fiori E, Monzani D, et al. Image-Guided Thermal Ablation as an Alternative to Surgery for Papillary Thyroid Microcarcinoma: Preliminary Results of an Italian Experience. Front Endocrinol. 2021;11:575152.

- 15. Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid. 2015;25(1):3-14.
- 16. Li X, Yan L, Xiao J, Li Y, Yang Z, Zhang M, et al. Follow-up strategy of radiofrequency ablation for papillary thyroid microcarcinoma: defining a response-to-ablation system. European Radiol. 2024;34(2):761-9.
- 17. Choi Y, Jung SL. Efficacy and safety of thermal ablation techniques for the treatment of primary papillary thyroid microcarcinoma: a systematic review and meta-analysis. Thyroid. 2020;30(5):720-31.
- 18. Nagaoka R, Ebina A, Toda K, et al. Multifocality and Progression of Papillary Thyroid Microcarcinoma During Active Surveillance. World J Surg. 2021;45(9):2769-76.
- 19. Giovanella L, Campennì A, Tuncel M, Petranović Ovčariček P. Integrated Diagnostics of Thyroid Nodules. Cancers. 2024;16(2):311.
- Hu G, Zhu W, Yang W, Wang H, Shen L, Zhang H. The effectiveness of radioactive iodine remnant ablation for papillary thyroid microcarcinoma: a systematic review and meta-analysis. World J Surg. 2016;40:100-9.
- 21. Li B, Qian Y, Huang Y, Li Z. Efficacy and safety of thermal ablation modalities for the treatment of papillary thyroid microcarcinoma: Systematic Review and network meta-analysis. Heliyon, 2024;10(3):e25536.
- 22. Chen S, Mao Y, Chen G. Economic effect between surgery and thermal ablation for patients with papillary thyroid microcarcinoma: a systemic review and meta-analysis. Endocrine. 2022;76(1):9-17.
- 23. Lan Y, Luo Y, Zhang M, Jin Z, Xiao J, Yan L, et al. Quality of life in papillary thyroid microcarcinoma patients undergoing radiofrequency ablation or surgery: a comparative study. Front Endocrinol. 2020;11:249.
- 24. Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10(9):2993-3036.

Cite this article as: Zuluaga MZ, Jiménez MVG, Cervantes EEA, Gastelum JLR, Jiménez MLG, Muriel SZ, et al. Integration of high-resolution imaging and minimally invasive ablation in the resection of thyroid microcarcinomas: evaluation of surgical precision and functional outcomes. Int J Res Med Sci 2025;13:324-30.