pISSN 2320-6071 | eISSN 2320-6012

Case Report

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20250725

Case report of a 19-year-old patient with β -thalassemia major, type 1 diabetes mellitus, osteoporosis and other major complications

Momin Sohel Munaf, Ariz Shaikh Mainoddin, Sana Javeriya*, Shaikh Abid Asifali, Aasem Khan, Juned Shaikh

Medicine, JIIUS Indian Institute of Medical Science and Research, Jalna, Maharashtra, India

Received: 21 February 2025 **Revised:** 28 February 2025 **Accepted:** 01 March 2025

*Correspondence:

Dr. Sana Javeriya,

E-mail: sanajaveriyaresearch@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

This case report presents a detailed clinical profile of a 19-year-old male with β -thalassemia major, highlighting the multi-system complications associated with long-term disease management and chronic transfusion therapy. Diagnosed at one year of age due to symptoms including poor feeding, irritability, developmental delays, and failure to thrive, the patient's haemoglobin electrophoresis showed markedly elevated HbF levels, confirming β -thalassemia major. Over the years, the patient has undergone regular transfusions and a splenectomy at age seven to address hypersplenism. Family screening in 2014 identified β -thalassemia trait in both parents and three siblings, prompting genetic counselling. In 2020, the patient developed diabetic ketoacidosis, presenting with hyperglycaemia and ketonuria, and was subsequently diagnosed with type 1 diabetes mellitus, managed with insulin therapy. By 2023, he exhibited signs of iron overload, with MRI showing iron deposition across multiple organs and serum ferritin levels exceeding 2000 ng/mL. Additional findings included hepatomegaly, mild pleural effusion, thyroid dysfunction, and osteoporosis confirmed by bone mineral density testing. Current management includes oral deferasirox for iron chelation, calcium and vitamin D supplementation, folic acid, and insulin therapy tailored to his glucose needs.

Keywords: Thalassemia major, β -thalassemia, Osteoporosis, Blood transfusion, Hemoglobinopathies, Thalassemia minor, Thalassemia intermedia

INTRODUCTION

Beta-thalassemias are inherited blood disorders caused by impaired synthesis of beta-globin chains in haemoglobin, leading to varying degrees of anaemia and symptoms. The global incidence of symptomatic cases is about 1 in 100,000. This condition encompasses a spectrum of hemoglobinopathies, primarily classified into three forms: thalassemia major, intermedia, and minor. ¹Thalassemia major, the most severe form, manifests in the first two years of life with severe anaemia, requiring regular RBC transfusions. Inadequate transfusion treatment can lead to growth retardation, jaundice, hepatosplenomegaly, skeletal deformities, and extra medullary masses. Chronic transfusions can cause iron overload, resulting in complications like diabetes, delayed sexual development,

and liver and heart disease. Beta-thalassemia is primarily caused by point mutations or, less commonly, deletions in the beta-globin gene on chromosome 11, leading to reduced (β +) or absent (β 0) beta-chain synthesis. This condition is often associated with iron overload, particularly affecting the pancreas, which impairs insulin secretion and increases insulin resistance, raising diabetes risk.

Family history, lifestyle, obesity, gender, and age further elevate diabetes susceptibility in beta-thalassemia patients.⁴ Osteoporosis is a prevalent complication in β -thalassemia major (β -TM), increasingly noted these days due to advancement in diagnostic modalities. Even with proper transfusion and iron chelation, patients with β -TM often face low bone density and a heightened fracture risk,

leading to reduced quality of life and increased morbidity.⁵ Thalassemia diagnosis relies on hematologic and molecular genetic testing, with genetic counselling and prenatal diagnosis often recommended. Treatment for thalassemia major typically involves regular RBC transfusions, iron chelation, and managing complications from iron overload in some cases, splenectomy may be necessary. Currently, bone marrow transplantation is the only definitive cure. Advances in transfusion, iron chelation, and bone marrow transplantation over the past 20 years have significantly improved the prognosis for individuals with beta-thalassemia. However, cardiac disease remains the leading cause of mortality in patients with iron overload.⁶

CASE REPORT

This study was conducted in the department of obstetrics A 19-year-old male with a history of β -thalassemia major, diagnosed at the age of one, presented to our hospital for a routine follow-up. His initial diagnosis was triggered by symptoms of poor feeding, delayed milestones, irritability, and inadequate weight gain observed in 2006. Screening at that time revealed a haemoglobin level of 4 g/dl (Table 01), with a peripheral blood smear showing marked anisocytosis, poikilocytosis, and a mix of microcytic and macrocytic cells alongside polychromasia.

Table 1: Complete haematological assessment.

Parameters	Results	Reference range		
WBC	5.2 ×10^3/ul	4.0–11.0		
Lymph	2.2×10^3/ul	2.0-9.0		
Mid	0.6×10^3/ul	0.1–4.0		
Gran	2.3×10^3/ul	2.0-9.0		
Lymph%	H 41.9 %	20.0–40.0		
Mid%	H 18.0 %	3.0–7.0		
Gran%	L 40.1 %	50.0–70.0		
HGB	L 4.0 g/dl	11.5–14.5		
RBC	L 1.65×10^6/ul	4.00–5.40		
НСТ	L 16.6 %	35.0–49.0		
MCV	L 64.6 fl	77.0–91.0		
МСН	L 24.6 pg	25.0–32.0		
MCHC	H 37.7 g/dl	31.5–34.5		
RDW-CV	18.2 %	11.5–14.5		
RDW-SD	54.1 fl	35.0–56.0		
PLT	155×10^3/ul	150–450		
MPV	10.8 fl	7.0–11.0		
PDW	L 14.7 15.0–17.0			
PCT	0.167 % 0.108–0.282			

Table 2: Other investigations including TFT and serum ferritin levels.

Parameters	2016	2023	2024	Reference range
T3	108.86	0.73	60.13	82-213 ng/dl
T4	5.64	4.59	3.21	5.6-11.7 ug/dl
TSH	3.458	2.0	2.64	0.45-4.5 uIU/ml
Serum ferritin	3942	2153	2954	28-397 ng/ml

Table 3: HBA, HBF, HBA2 levels of other family members depicting familial association.

Parameters (2014)	Age (in years)	HbA %	Hbf %	HbA2 %
Patient	8	83.2	3.1	5.5
Mother	30	82.6	3.6	5.3
Father	38	82.1	2.7	5.3
Sibling 1 (male)	20	84.4	1.0	5.2
Sibling 2 (female)	17	83.8	1.0	5.2
Sibling 3 (male)	4	84.8	1.8	5.6
Reference Range	-	96-98	0.5- 0.8	1.5-3.2

Platelets were adequate. Agarose gel electrophoresis of haemoglobin demonstrated HbA at 8.7% (reference range, 96.0-99.0%), HbF at 89.5% (reference range <2.0%), and HbA2 at 1.8% (reference range <3.5%), which confirmed a diagnosis of β -thalassemia major. Sickling test was negative.

The patient was subsequently managed with regular blood transfusions and supportive care as required. In 2011, a splenectomy was performed under general anaesthesia. Both direct and indirect Coombs tests were negative, and serological testing for transfusion-transmissible infections was non-reactive.

During a follow-up in 2014, the patient's family members underwent haemoglobin electrophoresis, which identified β -thalassemia trait in the mother, father, and three siblings but they were asymptomatic.

They were provided genetic counselling to understand potential future risks. HbA, HbF and HBA2 of patient's family members is given in the Table 03.

In 2020, the patient presented to the emergency department with a syncopal episode. Initial evaluation revealed a random blood glucose level of 452 mg/dl, HbA1c of 17.4%, urine ketones at +3, and an ABG profile with pH-6.79 (normal: 7.35-7.45), Pco2-25.70 (normal 35-48), Po2- 149 (normal: 83-108) suggestive of diabetic ketoacidosis (DKA).

He was managed under close observation and started on insulin therapy, which has been continued as part of his management for type 1 diabetes mellitus.

In 2023, during a follow-up, the patient was found to have an abnormal thyroid profile (Table 2), hepatomegaly, and mild right-sided pleural effusion on ultrasonography. MRI findings of iron quantification of organs showed significant iron deposition across various organs, attributed to chronic transfusion therapy (Figure 1).

Bone mineral density assessment identified osteoporosis (Figure 2). Serum ferritin levels were noted to be >2000 ng/ml (Table 2), indicative of iron overload. Some other accidental findings included raised IgE-664.7 ng/ml (normal range is 3.6-480 ng/ml).

The patient's current management includes oral deferasirox (100 mg daily) for iron chelation, calcium and vitamin D supplementation (Calcimax 500 mg daily), folic acid (Folvite 5 mg daily), and an insulin regimen comprising a premixed insulin twice daily along with Actrapid adjusted based on glucose levels.

He has been advised to continue this regimen for three months, with indicated blood transfusions every 21 days, with a follow-up planned thereafter to monitor treatment response and manage any further complications.

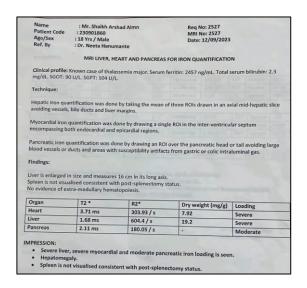


Figure 1: MRI quantification.

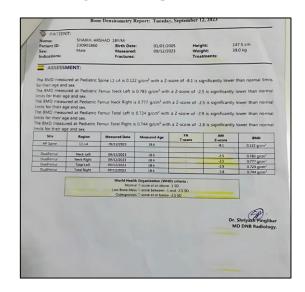


Figure 2: BMD scans.

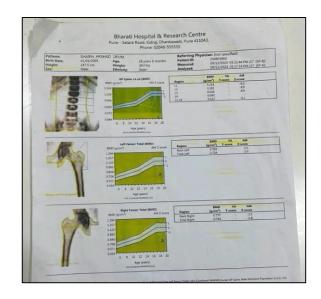


Figure 3: BMD scans.

Figure 4: Patient with thalassemic features.

DISCUSSION

The clinically relevant variants of β -thalassemia, β -thalassemia major and β -thalassemia intermedia, are characterized by either a complete lack or reduction in the synthesis of the beta globin chain, a crucial component of haemoglobin. Patients with β -thalassemia major typically present between six and 24 months of age with symptoms including severe anaemia-induced pallor, impaired weight gain, growth retardation, mild jaundice, and hepatosplenomegaly. Additional clinical features may encompass feeding difficulties, recurrent diarrhea, irritability, and frequent episodes of fever. 7

β-thalassemia follows an autosomal recessive inheritance pattern. When both parents are heterozygous carriers of a pathogenic variant in the HBB gene, each sibling of an affected individual has a 25% probability of being affected, a 50% chance of being a (typically) asymptomatic carrier, and a 25% likelihood of being unaffected and non-carrier at conception. If one parent is a heterozygous carrier of an HBB pathogenic variant and the other parent has β-thalassemia, each sibling has a 50% chance of inheriting biallelic HBB pathogenic variants and being affected, and a 50% chance of inheriting a single HBB pathogenic variant and being a (typically) asymptomatic carrier.⁶ Diabetes mellitus represents a common endocrinopathy linked to transfusional hemosiderosis, affecting 20-30% of adults with βthalassemia globally and contributing to considerable

morbidity. This condition has multiple contributing factors, with iron overload being predominant, making its management particularly challenging. Early intervention, along with closely monitored insulin therapies and enhanced chelation, may improve pancreatic function and help prevent cellular damage.8 Osteoporosis, marked by bone density and deterioration of bone microarchitecture, results in increased bone fragility. In individuals with β-thalassemia, osteoporosis is a significant morbidity factor, arising from multiple causes. Ineffective erythropoiesis leads to bone marrow expansion, which reduces trabecular bone tissue and causes cortical thinning. Excessive iron accumulation further contributes by disrupting endocrine function, increasing bone turnover. Additionally, complications from the disease may lead to reduced physical activity, subsequently hindering optimal bone mineralization.

Osteoporosis treatments for individuals with β -thalassemia include bisphosphonates (such as clodronate, pamidronate, and alendronate), which may be used alone or combined with hormone replacement therapy (HRT). Other options include calcitonin, calcium, zinc supplementation, hydroxyurea, and HRT alone to prevent hypogonadism. Denosumab, a fully human monoclonal antibody, works by inhibiting bone resorption and enhancing bone mineral density (BMD). Additionally, strontium ranelate supports bone health by promoting bone formation while inhibiting resorption, leading to a net increase in BMD, greater bone strength, and reduced fracture risk. 9

Both α - and β -thalassemia carriers (heterozygotes) typically exhibit microcytic hypochromic red blood cell parameters, with or without mild anaemia. The identification of carriers relies on evaluating red cell indices, morphology, and measuring haemoglobin (Hb) fractions. Additionally, iron status should be assessed using ferritin levels, zinc protoporphyrin measurements, and the iron/total iron-binding capacity/saturation index. In β -thalassemia carriers, mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) are significantly reduced (MCV: 60–70 fl, MCH: 19–23 pg), while α -thalassemia carriers typically show a mild to moderate reduction. The most reliable test for detecting β -thalassemia carriers is the measurement of HbA2, although this can be influenced by the presence of δ -thalassemia. ¹⁰

Due to the complexity of the regulation of the β -globin gene and the role of red cells in many physiological processes, patients can manifest a large spectrum of phenotypes. As clinical requirements vary from patient to patient, it is appropriate to emphasize the major differences in the light of potential novel therapeutics. Patients suffering the most severe form, indicated as β -thalassemia major, require chronic blood transfusion for survival. In some cases, splenectomy may be necessary. Currently, bone marrow transplantation is the only definitive cure. Myocardial iron accumulation is a primary contributor to heart failure and early mortality in

patients with transfusion-dependent thalassemia major. Patients experiencing transfusional iron overload are prone to myocardial iron deposition. When myocardial T2 values fall below 10 ms, indicating severe iron overload, there is a markedly elevated risk of heart failure. Monotherapy with deferasirox (DFX) or deferoxamine (DFO) has been shown to significantly reduce total body iron overload, including notable reductions in myocardial iron, in transfusion-dependent thalassemia patients with varying degrees of myocardial iron overload, ranging from mild to severe. 13

The mechanisms underlying iron accumulation in organs differ between non-transfusion-dependent thalassemia (NTDT) and transfusion-dependent thalassemia (TDT). In NTDT, iron overload is primarily driven by several factors, including enhanced erythropoiesis, hypoxia, and the influence of erythroferrone, which inhibits hepcidin synthesis in the liver. ¹⁴

Unlike NTDT patients, individuals with TDT depend on regular red blood cell (RBC) transfusions for survival. As transfused RBCs age, they are cleared by macrophages in the spleen and liver. However, because there is no natural mechanism for excreting the iron released from these cells, the continuous transfusion of RBCs becomes the main driver of iron overload in TDT patients.¹⁵ The genetic defect in thalassemia results in the production of ineffective red blood cells, which are filtered out by the spleen, causing its enlargement. Splenectomy can increase the lifespan of red blood cells and reduce the frequency of transfusions required. 16 Hematopoietic stem cell transplantation has emerged as a well-established curative treatment for thalassemia major, demonstrating excellent long-term outcomes. However, allogeneic bone marrow transplantation (BMT) is frequently constrained by the availability of suitable donors. 17

CONCLUSION

This case sheds light on the evolving challenges in the long-term management of β-thalassemia major, particularly the complex interplay between chronic transfusion therapy, iron overload, and multi-organ complications. The co-occurrence of type 1 diabetes mellitus, osteoporosis, hepatomegaly, and endocrine dysfunction highlights the necessity of early screening protocols and integrated multidisciplinary care. Advances in iron chelation therapy, genetic counselling, and emerging curative approaches such as gene therapy and hematopoietic stem cell transplantation hold promise for improving patient outcomes. This case reinforces the importance of continuous research into optimizing transfusion strategies, mitigating iron toxicity, and developing targeted therapies to enhance the quality of life and prognosis for individuals with β -thalassemia major.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Mahajan PS, Kolleri JJ, Ait Souabni S, Prasad S, Belhaddad EH, Mohammed H. Report of a rare case of beta-thalassemia major with subperiosteal hematomas. Cureus. 2022;14(4):23770.
- 2. Bajwa H, Basit H. Thalassemia. Stat Pearls. Treasure Island (FL): Stat Pearls Publishing. 2024.
- 3. Galanello R, Origa R. Beta-thalassemia. Orph J Rare Dis. 2010;5:1-5.
- Mahgoub EO, Qannita R, Alalami A, Al Shehadat O, Al Mahmoud R, Dib A, et al. Diabetes mellitus progression in β-thalassaemia major patients: The impact of iron overload. Adv Biomed Health Sci. 2024;3(1):5-12.
- Gaudio A, Morabito N, Catalano A, Rapisarda R, Xourafa A, Lasco A. Pathogenesis of thalassemia major-associated osteoporosis: a review with insights from clinical experience. J Clin Res Pediat Endocrinol. 2019;11(2):110.
- Langer AL. Beta-Thalassemia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle 1993-2024. 2002. Available at: https://www.ncbi.nlm.nih.gov. Accessed on 21 September 2024.
- 7. Origa R. β-Thalassemia. Genetics in medicine. 2017;19(6):609-19.
- 8. Chatterjee R, Bajoria R. New concept in natural history and management of diabetes mellitus in thalassemia major. Hemoglobin. 2009;33(1):127-30.
- 9. Bhardwaj A, Swe KM, Sinha NK. Treatment for osteoporosis in people with beta-thalassaemia. Cochrane Database of Systematic Reviews. 2023(5).10429.
- 10. Brancaleoni V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. International Journal of laboratory hematology. 2016;38:32-40.
- 11. Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100(4):418.
- 12. Kirk P, Roughton M, Porter JB, Walker JM, Tanner MA, Patel J, et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009;120(20):1961-8.
- 13. Aydinok Y, Kattamis A, Cappellini MD. Effects of deferasirox-deferoxamine on myocardial and liver iron in patients with severe transfusional iron overload. Blood. 2015;125(25):3868–77.
- 14. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Gen. 2014;46(7):678–84.
- 15. Ginzburg Y, Rivella S. B-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood. 2011;118(16):4321–30.
- 16. Sharma A, Easow Mathew M, Puri L. Splenectomy for people with thalassaemia major or intermedia. The Cochr Dat Sys Rev. 2019;9(9):10517.

17. Gaziev J. Bone marrow transplantation for thalassemia from alternative related donors: Improved outcomes with a new approach. Blood. 2013;122(15):2751-6.

Cite this article as: Munaf MS, Mainoddin AS, Javeriya S, Asifali S, Khan A, Shaikh J. Case report of a 19-year-old patient with β-thalassemia major, type 1 diabetes mellitus, osteoporosis and other major complications. Int J Res Med Sci 2025;13:1680-5.