pISSN 2320-6071 | eISSN 2320-6012

Review Article

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20252056

Pseudohypoparathyroidism type 1A and Albright hereditary osteodystrophy: a comprehensive review of molecular pathogenesis, clinical manifestations, and therapeutic approaches

Galilea L. Gálvez*, Jesus E. G. Roblero

Universidad Veracruzana. Campus ciudad, Mendoza, Mexico

Received: 13 May 2025 Accepted: 13 June 2025

*Correspondence: Dr. Galilea L. Gálvez,

E-mail: felixosuna10@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Pseudohypoparathyroidism type 1A (PHP1A) is a rare genetic disorder characterized by end-organ resistance to parathyroid hormone (PTH) due to heterozygous inactivating mutations in the GNAS gene. Patients frequently exhibit the phenotypic features of Albright hereditary osteodystrophy (AHO), including short stature, brachydactyly, subcutaneous ossifications, and obesity. Despite advances in molecular genetics, the clinical management of PHP1A remains challenging due to its multisystemic involvement. This review aims to elucidate the molecular mechanisms underlying PHP1A, delineate its clinical and biochemical characteristics, and discuss current and emerging therapeutic strategies. A systematic literature review was conducted, analyzing peer-reviewed articles from PubMed, Scopus, and OMIM databases focusing on PHP1A, AHO, and related disorders. PHP1A arises from maternal transmission of *GNAS* mutations, leading to impaired Gsα protein function and subsequent hormonal resistance. The AHO phenotype is present in most cases, with additional endocrine abnormalities such as hypothyroidism and growth hormone deficiency commonly reported. Early diagnosis is essential to mitigate complications, including severe hypocalcemia and neurocognitive impairments. Treatment involves calcium and vitamin D supplementation, though targeted therapies remain under investigation. PHP1A with AHO represents a complex multisystem disorder necessitating a multidisciplinary approach. Further research into genotype-phenotype correlations and novel therapeutic interventions is warranted to improve patient outcomes.

Keywords: PHP1A, AHO, GNAS gene mutation, Hormone resistance, Hypocalcemia, Brachydactyly, Endocrine disorders, Imprinted gene disorder

INTRODUCTION

Pseudohypoparathyroidism (PHP) encompasses a heterogeneous group of disorders characterized by target tissue resistance to parathyroid hormone (PTH), leading to hypocalcemia, hyperphosphatemia, and elevated PTH levels. Among these, pseudohypoparathyroidism type 1A (PHP1A; OMIM #103580) is distinguished by its association with Albright hereditary osteodystrophy (AHO), a clinical phenotype first described by Fuller Albright in 1942. PHP1A results from heterozygous loss-of-function mutations in the GNAS gene, which encodes

the stimulatory G-protein alpha subunit (Gsa), a critical mediator of PTH and other hormone signaling pathways.^{1,2}

The GNAS gene exhibits complex genomic imprinting, whereby mutations on the maternal allele lead to PHP1A, while paternal mutations cause pseudopseudohypoparathyroidism (PPHP)—a disorder with AHO features but without hormonal resistance. This parent-of-origin effect underscores the importance of epigenetic regulation in disease manifestation. ^{1,2}

Clinically, PHP1A presents with multihormonal resistance (PTH, TSH, gonadotropins) alongside AHO features such

as short stature, round facies, brachydactyly (particularly of the 4th and 5th metacarpals), subcutaneous ossifications, and intellectual disability in some cases. The biochemical hallmark includes hypocalcemia secondary to PTH resistance, often requiring lifelong calcium and active vitamin D analogs (e.g., calcitriol) for management.^{1,2}

Despite diagnostic advancements, PHP1A remains underrecognized due to its variable expressivity and overlap with other forms of PHP. This article provides an in-depth analysis of PHP1A's molecular genetics, clinical spectrum, diagnostic criteria, and therapeutic challenges, emphasizing the need for early intervention to prevent long-term sequelae.^{3,4}

EPIDEMIOLOGY

Pseudohypoparathyroidism type 1A (PHP1A) is an exceedingly rare endocrine disorder, with an estimated prevalence of 0.79 to 1.1 per 100,000 individuals based on population studies. Due to its autosomal dominant inheritance with maternal imprinting, the condition follows a non-Mendelian transmission pattern, contributing to its low incidence. The disorder is genetically linked to heterozygous inactivating mutations in the GNAS gene, located on chromosome 20q13.32, which encodes the stimulatory G-protein alpha subunit $(Gs\alpha)$.

Demographic and genetic distribution

Gender and age of onset

PHP1A manifests equally in both sexes, though phenotypic expression may vary due to hormonal influences. Symptoms typically arise in early childhood, with biochemical abnormalities (e.g., hypocalcemia, elevated PTH) often detected within the first decade of life.⁵

Geographical and ethnic variability

No significant ethnic or geographic predilection has been established, though underdiagnosis in resource-limited settings may skew reported prevalence.⁵

Familial versus sporadic cases

Approximately 60-70% of PHP1A cases are familial, inherited via maternally transmitted *GNAS* mutations, while 30-40% result from de novo mutations.⁵

Prevalence of Albright hereditary osteodystrophy phenotype

The AHO phenotype is present in nearly all PHP1A patients, though expressivity varies. Key clinical features include: brachydactyly (most common, ~70-80% of cases), particularly shortening of the 4th and 5th metacarpals (positive "knuckle dimple sign"), short stature

(~60% of patients), often associated with growth hormone (GH) resistance or deficiency, subcutaneous ossifications (~30-50%), which may progress into progressive osseous heteroplasia (POH) in severe cases, and obesity and round facies (~50-70%), linked to metabolic dysregulation and leptin resistance.⁵

Associated endocrine and metabolic abnormalities

Due to multihormonal resistance, PHP1A patients frequently develop additional endocrine disorders, including: resistance to thyroid-stimulating hormone (TSH) (~60-70%), leading to hypothyroidism, gonadotropin resistance (~30-50%), contributing to delayed puberty or infertility, and growth hormone deficiency (GHD) (~20-40%), exacerbating short stature.⁵

Mortality and morbidity considerations

While PHP1A is not typically life-threatening, untreated hypocalcemia can lead to seizures, cardiac arrhythmias, and basal ganglia calcifications, increasing long-term morbidity. Early diagnosis and treatment significantly improve prognosis, though neurocognitive impairments (e.g., developmental delay, IQ reduction) persist in ~30-50% of cases, likely due to prolonged hypocalcemia and hormonal dysregulation.⁵

Underdiagnosis and diagnostic challenges

Due to its heterogeneous presentation, PHP1A is often misdiagnosed as: idiopathic hypoparathyroidism (if AHO features are subtle), pseudopseudohypoparathyroidism (PPHP) (if hormonal resistance is overlooked), and other skeletal dysplasias (e.g., brachydactyly-mental retardation syndrome).⁵

Improved genetic testing and PTH resistance assays have enhanced detection, yet many cases remain undiagnosed until adulthood. ⁵

PHP1A with AHO is a rare, multisystem disorder with complex genetic and phenotypic variability. Epidemiological data remain limited due to its rarity, but increased awareness and next-generation sequencing (NGS) are uncovering broader genotypic-phenotypic correlations. Future registry-based studies are essential to refine prevalence estimates and optimize management strategies. ⁵

CLINICAL MANIFESTATIONS

PHP1A represents a complex clinical entity characterized by a constellation of endocrine and developmental abnormalities stemming from impaired $Gs\alpha$ protein signaling due to maternally inherited GNAS gene mutations. The clinical presentation is dominated by the distinctive features of AHO, a phenotypic spectrum that manifests through characteristic somatic findings coupled with multi-hormonal resistance. The pathognomonic

features of AHO include a combination of skeletal, neurological, and metabolic derangements that collectively contribute to the unique clinical identity of this disorder. ⁶

The most recognizable somatic manifestation is brachydactyly, particularly affecting the fourth and fifth digits, which presents as shortening of the metacarpals and phalanges, often detectable through the classic "knuckle dimple sign" observed when the patient makes a fist. This skeletal dysplasia frequently coexists with other osseous abnormalities, including progressive osseous heteroplasia, characterized by ectopic ossification of subcutaneous tissues and deep connective structures, which may lead to significant functional impairment over time. The craniofacial morphology often exhibits a round face with a flattened nasal bridge, and many patients demonstrate short stature resulting from a combination of growth plate abnormalities and growth hormone insensitivity. 6

Beyond the skeletal phenotype, patients with PHP1A exhibit a broad spectrum of endocrine dysfunctions primarily due to resistance to multiple hormones that signal through Gsα-coupled receptors. Parathyroid hormone resistance remains the biochemical hallmark, leading to hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism, which may present clinically with neuromuscular irritability, paresthesias, or even seizures in severe cases. Concurrent resistance to thyroid-stimulating hormone frequently results in hypothyroidism, manifesting with fatigue, intolerance, and metabolic slowing. Gonadotropin resistance may lead to delayed puberty or incomplete sexual maturation, while growth hormone deficiency or resistance contributes further to the observed growth retardation.6

The metabolic profile of these patients is frequently complicated by obesity, which appears to be mediated through both hormonal dysregulation and potential central nervous system effects of $Gs\alpha$ deficiency. This predisposition to weight gain often begins in early childhood and tends to progress, leading to complications such as insulin resistance and dyslipidemia. Neurologically, many patients exhibit some degree of cognitive impairment, ranging from mild learning disabilities to more significant intellectual deficits, the severity of which correlates with the degree and duration of metabolic derangements, particularly hypocalcemia. 6

Cutaneous findings may include subcutaneous calcifications or ossifications, which can be palpated as firm nodules and may cause discomfort or limited mobility when located near joints. Additionally, some patients demonstrate dental abnormalities such as enamel hypoplasia or delayed tooth eruption, reflecting the role of PTH in dental development.⁷

The clinical presentation of PHP1A with AHO phenotype thus represents a multisystem disorder with variable expressivity, where the severity of each component may differ significantly among affected individuals. The complex interplay between the developmental abnormalities of AHO and the progressive endocrine dysfunctions creates a challenging clinical scenario that requires comprehensive multidisciplinary management to address the diverse manifestations and prevent long-term complications. Early recognition of these clinical features is paramount, as timely intervention can significantly alter the disease trajectory and improve quality of life for affected individuals. The phenotypic variability observed in this condition underscores the importance of considering PHP1A in the differential diagnosis of patients presenting with suggestive features, even in the absence of the full spectrum of classical findings.⁷

DIAGNOSTIC APPROACHES

The diagnosis of PHP1A with AHO phenotype represents a complex clinical challenge that requires a multifaceted diagnostic approach integrating biochemical, genetic, radiological, and clinical evaluations. The diagnostic pathway typically commences with the recognition of the characteristic clinical phenotype, followed by confirmation through specialized laboratory investigations and molecular genetic testing to establish a definitive diagnosis.⁸

Initial biochemical evaluation focuses on demonstrating the hallmark PTH resistance, which manifests as hypocalcemia, hyperphosphatemia, and elevated PTH levels despite normal renal function. This paradoxical combination of findings, often referred to as biochemical pseudohypoparathyroidism, serves as the fundamental diagnostic criterion. The Ellsworth-Howard test, though historically significant, has largely been replaced by more contemporary methods of assessing PTH resistance through measurement of urinary cyclic adenosine monophosphate (cAMP) excretion following PTH administration. However, in clinical practice, the combination of typical AHO features with biochemical evidence of PTH resistance often suffices for provisional diagnosis without requiring provocative testing.⁸

The diagnostic workup must extend beyond calcium-phosphate metabolism to evaluate potential multihormonal resistance, which represents a key feature of PHP1A. Thyroid function tests frequently reveal elevated thyroid-stimulating hormone (TSH) levels with normal or low thyroxine, indicative of TSH resistance. Similarly, assessment of growth hormone axis may demonstrate partial growth hormone resistance, while gonadal function tests might reveal elevated gonadotropins with low sex steroid levels. These endocrine abnormalities, when present in conjunction with AHO features, significantly strengthen the diagnostic suspicion for PHP1A.⁸

Molecular genetic analysis targeting the GNAS locus on chromosome 20q13.3 constitutes the gold standard for confirmatory diagnosis. The identification of heterozygous

inactivating mutations in the maternally inherited allele of GNAS provides definitive evidence of PHP1A. Advanced sequencing techniques, including next-generation sequencing panels and methylation-specific PCR, have enhanced our ability to detect not only point mutations but also epigenetic alterations that may affect GNAS expression. Importantly, genetic testing must be interpreted in the context of parental origin due to the genomic imprinting phenomenon, where only maternally inherited mutations result in the PHP1A phenotype.⁹

Radiological assessment plays a complementary role in the diagnostic process, with characteristic findings including shortening of the metacarpals (particularly the fourth and fifth), advanced bone age, and occasionally subcutaneous calcifications. Hand radiographs demonstrating these skeletal abnormalities provide supportive evidence when combined with biochemical and clinical findings. In cases with neurological symptoms, brain imaging may reveal basal ganglia calcifications, a finding associated with chronic hypocalcemia.⁹

The diagnostic process must also incorporate careful differential diagnosis to distinguish PHP1A from related disorders such as PPHP, PHP type 1B, and other conditions featuring brachydactyly or hormonal resistance. This distinction is particularly crucial given the overlapping phenotypic features but differing management implications of these conditions. A comprehensive family history is essential, as the pattern of inheritance and phenotypic expression across generations can provide valuable diagnostic clues. ¹⁰

Recent advances in diagnostic methodologies, including more sensitive hormone assays and sophisticated genetic testing platforms, have improved our ability to detect atypical or mild cases of PHP1A. However, the diagnosis remains challenging in cases with incomplete or subtle presentations, requiring clinicians to maintain a high index of suspicion when evaluating patients with suggestive features. The integration of clinical expertise with advanced laboratory and genetic testing represents the optimal approach for accurate diagnosis of this complex disorder, enabling appropriate management and genetic counseling for affected individuals and their families.¹¹

THERAPEUTIC MANAGEMENT

The therapeutic approach to PHP1A with AHO phenotype necessitates a comprehensive, multidisciplinary strategy aimed at addressing both the endocrine manifestations and systemic complications characteristic of this complex disorder. The cornerstone of management revolves around the correction of hormonal resistance states while simultaneously managing the somatic manifestations of AHO, requiring careful titration of therapeutic interventions to achieve optimal metabolic control without inducing iatrogenic complications.¹¹

The primary therapeutic challenge lies in overcoming the end-organ resistance to PTH, which manifests as hypocalcemia and hyperphosphatemia. Current management protocols emphasize the administration of active vitamin D analogs, particularly calcitriol (1,25dihydroxyvitamin D3), in conjunction with calcium supplementation to maintain serum calcium levels within the low-normal range. This approach requires meticulous monitoring of serum calcium, phosphorus, and PTH levels to avoid the dual pitfalls of undertreatment leading to hypocalcemic complications and overtreatment resulting in hypercalciuria or nephrocalcinosis. The therapeutic target typically aims for serum calcium concentrations in the lower quartile of the normal range while maintaining PTH levels at approximately 2-3 times the upper limit of normal, reflecting the partial resistance state. 12

Concomitant thyroid-stimulating hormone (TSH) resistance necessitates levothyroxine replacement therapy, with dosing requirements often exceeding those for primary hypothyroidism due to the combined peripheral and central resistance. Thyroid function must be monitored regularly, with particular attention to maintaining free thyroxine levels in the upper half of the normal range to ensure adequate tissue thyroid hormone availability. The management of growth hormone (GH) deficiency or resistance presents a more complex therapeutic dilemma, as the efficacy of recombinant GH therapy may be blunted by peripheral resistance. However, some patients demonstrate improved growth velocity with GH treatment, suggesting partial responsiveness that may warrant therapeutic trial in selected cases.¹²

The management of subcutaneous ossifications and progressive osseous heteroplasia remains particularly challenging, with current approaches focusing on preventing the progression of ectopic calcification through meticulous calcium-phosphate homeostasis. While no definitive medical therapy exists for established ossifications, some evidence suggests bisphosphonates may have a role in modulating abnormal calcium deposition, though their use remains controversial and requires further investigation. Physical therapy and orthopedic interventions may be necessary to maintain joint mobility and function in cases with significant ectopic bone formation.¹³

The metabolic complications associated with PHP1A, including obesity and insulin resistance, demand a proactive approach incorporating nutritional counseling, physical activity promotion, and, when indicated, pharmacological management of associated metabolic derangements. The predisposition to obesity appears to be intrinsic to the disorder, likely related to central nervous system effects of Gs α deficiency, making weight management particularly challenging. Early intervention with lifestyle modifications may help mitigate the severity of metabolic complications, though the efficacy of conventional weight loss strategies is often limited in this population. 14

Neurocognitive manifestations require regular developmental assessments and early implementation of educational support services when indicated. While no specific pharmacological interventions exist for the cognitive aspects of PHP1A, optimization of calcium homeostasis and thyroid function may help maximize neurodevelopmental potential. Seizure management in the context of hypocalcemia necessitates both acute correction of electrolyte abnormalities and chronic maintenance therapy, with careful consideration of potential interactions between antiepileptic drugs and calcium metabolism.¹⁵

Emerging therapeutic strategies under investigation include targeted approaches to bypass the defective Gsa signaling pathway, though these remain experimental at present. The complexity of PHP1A management underscores the necessity for coordinated care among endocrinologists, geneticists, orthopedic specialists, and other healthcare providers to address the multisystem nature of this condition. Regular monitoring for long-term complications, including renal function assessment, bone density evaluation, and cardiovascular risk factor screening, forms an integral component of the lifelong management strategy for affected individuals. The therapeutic approach must be individualized based on disease severity, age of presentation, and specific pattern of organ involvement, with the ultimate goal of optimizing quality of life and preventing disease-related complications.16

CONCLUSION

PHP1A with AHO phenotype represents a paradigmatic example of the complex interplay between genetic imprinting, endocrine dysfunction, and developmental abnormalities. This multifaceted disorder, stemming from maternally inherited inactivating mutations in the GNAS gene, manifests as a clinical triad of hormonal resistance, characteristic somatic features, and neurocognitive impairment, presenting significant diagnostic and therapeutic challenges for clinicians. The pathophysiological hallmark of impaired Gsa protein signaling results not only in the well-recognized parathyroid hormone resistance but also in a spectrum of multihormonal perturbations that extend far beyond calcium metabolism.

The management of PHP1A with AHO phenotype necessitates a nuanced understanding of its underlying molecular pathogenesis to guide therapeutic decision-making. While current treatment strategies primarily focus on correcting the biochemical abnormalities through calcium and active vitamin D supplementation, along with hormone replacement for associated endocrinopathies, these approaches merely address the symptomatic manifestations rather than the fundamental molecular defect. The variable expressivity of the condition, particularly in terms of neurocognitive outcomes and progression of ectopic ossifications, underscores the need

for personalized medicine approaches tailored to each patient's specific phenotypic presentation.

Significant advances in genetic diagnostics have improved our ability to confirm the diagnosis and provide accurate genetic counseling, particularly regarding the parent-oforigin inheritance patterns that dictate disease expression. However, numerous knowledge gaps persist regarding the precise mechanisms by which GNAS mutations lead to the diverse clinical manifestations observed in PHP1A. The frequent development of treatment-resistant complications, such as progressive osseous heteroplasia and severe obesity, highlights the limitations of current therapeutic modalities and underscores the urgent need for targeted therapies that address the root molecular pathology.

Future research directions should focus on elucidating the genotype-phenotype correlations that explain the clinical variability among patients, developing biomarkers to predict disease progression and therapeutic response, and exploring novel treatment strategies that might bypass or correct the defective Gsα signaling pathway. The establishment of international patient registries and collaborative research networks will be crucial to advance our understanding of this rare disorder, given the challenges posed by its low prevalence and clinical heterogeneity.

From a broader perspective, PHP1A with AHO phenotype serves as a valuable model for understanding the physiological roles of $Gs\alpha$ -coupled receptor signaling in human development and metabolism. The insights gained from studying this disorder have far-reaching implications for our comprehension of hormone resistance states, genomic imprinting phenomena, and skeletal development. As we continue to unravel the complexities of this condition, a multidisciplinary approach integrating endocrinology, genetics, developmental biology, and neuroscience will be essential to optimize patient outcomes and quality of life.

In conclusion, while significant progress has been made in characterizing and managing PHP1A with AHO phenotype, much work remains to be done to translate our growing molecular understanding into more effective therapeutic interventions. The care of affected individuals requires lifelong surveillance and a comprehensive treatment approach that addresses both the endocrine and developmental aspects of this challenging disorder. Continued research efforts hold the promise of not only improving the prognosis for patients with PHP1A but also advancing our fundamental knowledge of G protein-coupled receptor signaling in human physiology and disease.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A, et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol. 2018;14(8):476-500.
- 2. Danzig J, Li D, Jan de Beur S, Levine MA. Highthroughput Molecular Analysis of Pseudohypoparathyroidism 1b Patients Reveals Novel Genetic and Epigenetic Defects. J Clin Endocrinol Metab. 2021;106(11):e4603-20.
- 3. Milioto A, Reyes M, Hanna P, Kiuchi Z, Turan S, Zeve D, et al. Lack of GNAS Remethylation During Oogenesis May Be a Cause of Sporadic Pseudohypoparathyroidism Type Ib. J Clin Endocrinol Metab. 2022;107(4):e1610-9.
- 4. Kiuchi Z, Reyes M, Jüppner H. Preferential Maternal Transmission of STX16-GNAS Mutations Responsible for Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B): Another Example of Transmission Ratio Distortion. J Bone Miner Res. 2021;36(4):696-703.
- Reyes M, Kagami M, Kawashima S, Pallotta J, Schnabel D, Fukami M, et al. A Novel GNAS Duplication Associated With Loss-of-Methylation Restricted to Exon A/B Causes Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res. 2021;36(3):546-52.
- Kiuchi Z, Reyes M, Hanna P, Sharma A, DeClue T, Olney RC, et al. Progression of PTH Resistance in Autosomal Dominant Pseudohypoparathyroidism Type Ib Due to Maternal STX16 Deletions. J Clin Endocrinol Metab. 2022;107(2):e681-7.
- 7. Bastepe M, Gensure RC. Hypoparathyroidism and Pseudohypoparathyroidism. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al. Endotext. MDText.com, Inc.; South Dartmouth (MA). 2024.
- 8. Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. Pseudohypoparathyroidism epidemiology, mortality

- and risk of complications. Clin Endocrinol (Oxf). 2016;84(6):904-11.
- Mantovani G, Elli FM. Inactivating PTH/PTHrP Signaling Disorders. Front Horm Res. 2019;51:147-59.
- 10. Jüppner H. Molecular Definition of Pseudohypoparathyroidism Variants. J Clin Endocrinol Metab. 2021;106(6):1541-52.
- 11. Long XD, Xiong J, Mo ZH, Dong CS, Jin P. Identification of a novel GNAS mutation in a case of pseudohypoparathyroidism type 1A with normocalcemia. BMC Med Genet. 2018;19(1):132.
- 12. Nakamoto JM, Zimmerman D, Jones EA, Loke KY, Siddiq K, Donlan MA, et al. Concurrent hormone resistance (pseudohypoparathyroidism type Ia) and hormone independence (testotoxicosis) caused by a unique mutation in the G alpha s gene. Biochem Mol Med. 1996;58(1):18-24.
- 13. Mazoni L, Apicella M, Saponaro F, Mantovani G, Elli FM, Borsari S, et al. Pseudohypoparathyroidism: Focus on Cerebral and Renal Calcifications. J Clin Endocrinol Metab. 2021;106(8):e3005-20.
- 14. Qi Z, Li Z, Gao Q, Dong L, Lin J, Peng K, et al. Characterizing Cerebral Imaging and Electroclinical Features of Five Pseudohypoparathyroidism Cases Presenting with Epileptic Seizures. Behav Neurol. 2022;2022:8710989.
- 15. Huang S, He Y, Lin X, Sun S, Zheng F. Clinical and genetic analysis of pseudohypoparathyroidism complicated by hypokalemia: a case report and review of the literature. BMC Endocr Disord. 2022;22(1):98.
- 16. Germain-Lee EL. Management of pseudohypoparathyroidism. Curr Opin Pediatr. 2019;31(4):537-49.

Cite this article as: Gálvez GL, Roblero JEG. Pseudohypoparathyroidism type 1A and Albright hereditary osteodystrophy: a comprehensive review of molecular pathogenesis, clinical manifestations, and therapeutic approaches. Int J Res Med Sci 2025;13:3097-102.