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ABSTRACT

Background: Sleep plays a vital role in cognitive function, memory consolidation, and overall neurological health.
Analysis of sleep microarchitecture including features such as sleep spindles, K-complexes, slow waves, and EEG
bandpower components provides critical insights into sleep disorders and genetic diseases. However, the complex
interactions between sleep architecture and underlying genetic abnormalities remain underexplored. This study aims to
investigate these interactions by leveraging advanced graph-based deep learning methods to uncover hidden
relationships within EEG signals.

Methods: We developed a graph autoencoder (GAE) combined with a Graph attention network (GAT) to analyze
polysomnography (PSG) data from the National Children's Hospital (NCH) dataset. EEG epochs were modelled as
graph nodes, while edges were constructed based on bandpower similarity between epochs, enabling dynamic
representation of sleep activity. The GAE learned latent embeddings that capture subtle patterns in sleep
microarchitecture, and the GAT applied attention mechanisms to classify and interpret relationships between EEG
events, sleep disorders, and genetic abnormalities. Three core analyses were conducted: (1) identifying differences in
sleep microarchitecture across sleep disorders, (2) detecting EEG event changes associated with genetic disorders, and
(3) exploring shared patterns linking sleep and genetic abnormalities.

Results: The model achieved classification accuracies of 92.4%, 91.2%, and 88.6% across the three tasks, respectively.
The approach successfully identified distinct EEG event patterns in subjects with co-occurring sleep disorders.
Conclusions: This work presents a scalable, automated, and interpretable framework for analyzing the interplay
between sleep microarchitecture, sleep disorders, and genetic disorders.
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INTRODUCTION

Sleep plays a vital role in cognitive processes such as
memory consolidation, emotion regulation, and overall
brain activity. New research indicates that an estimated 70
million American adults are experiencing either one or
another sleep disorder, and most teenagers are getting less
than the requisite amount of sleep. Across the globe, over
one-third of adults describe themselves as suffering from
insomnia, two-thirds indicate disturbed sleep on a nightly
basis, and 80% say that they want to sleep better.

Sleep is a very intricate physiological condition with
distinctive stages, i.e., rapid eye movement (REM) and
non-rapid eye movement (NREM) sleep. Slow-wave sleep
(SWS), or deep sleep, occurring during NREM Stage 3, is
particularly important for brain repair and synaptic
plasticity. Slow waves, i.e., high-amplitude, low-
frequency oscillations of the EEG signal, are an
elementary component of sleep microarchitecture and are
inextricably interwoven with cognitive repair and
neurological health. Electroencephalography (EEG) is one
of the foremost research tools of sleep. The EEG signals
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can be separated into bands of frequencies: delta (0.5-4
Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and
gamma (>30 Hz).!

Sleep microarchitecture refers to the microscopic
characteristics of brain activity during sleep, as they
appear on electroencephalography (EEG) records, beyond
the traditional sleep categorization into distinct stages.
Sleep microarchitecture is directly associated with EEG
frequency bands. Different EEG bands prevail in different
stages of sleep and contribute to the more specific
information regarding brain activity that defines
microarchitectural features.

In this paper, we propose a dynamic graph-based model
that views EEG epochs as nodes, with edges drawn based
on the similarity between bandpower profiles. The model
draws on a GAE to map data to its latent representations
that preserve the inherent structure of data. The
classification is improved through the GAT, which
incorporates the most crucial EEG features with a focus on
the microarchitectural alterations across groups. We will
aim at three major goals: (1) Determination of differences
in sleep microarchitecture among sleep disorders, (2)
Examination of changes in EEG events among patients
with uncommon genetic disorders, and (3) Identification
of common patterns that connect particular abnormalities
of sleep with genetic conditions.

Research gap identified

Despite extensive research on sleep disorders, several
critical gaps remain unaddressed. One notable limitation is
the lack of studies focusing on paediatric sleep disorders,
as most research primarily targets middle-aged and older
populations. Understanding sleep disturbances in children
is crucial for early intervention and developmental
outcomes. Another new direction yet to be thoroughly
addressed is applying GNN to the field of sleep science.
GNNs have the potential to identify complex patterns
among sleep epochs, sleep disorders, and comorbid
conditions and offer a new insight into the identification of
patterns in high-dimensional PSG data.

Need for research
What makes this a persistent research gap?

Genome-wide association studies (GWAS), which scan
markers across the entire genome of large populations to
detect gene variations linked to diseases, have been highly
effective in identifying around 14 susceptibility loci for
sleep disorders such as narcolepsy and restless legs
syndrome.® These findings have enhanced the
understanding of the genetic etiology of sleep-related
disorders and their possible associations with other
illnesses, enabling the development of more targeted
strategies for diagnosis, treatment, and prevention. Sleep
disorders are complex traits influenced by multiple genes
and environmental factors, unlike simple Mendelian

disorders caused by single gene mutations. GWAS have
uncovered numerous genetic variants associated with
insomnia often overlapping with psychiatric disorders:
variants linked to restless legs syndrome clarifying its
pathophysiology, and immune-related genes implicated in
narcolepsy. In addition, genes influencing sleep duration
and chronotype have been identified, offering deeper
insights into the genetic mechanisms underlying sleep
regulation.

Problem statement

To develop a hybrid GAE-GAT model, which learns
dynamically graph structures from sleep microarchitecture
and predicts associations between sleep disorders and
genetic disorders.

To create a single pipeline that identifies major EEG
microarchitecture events, predicts latent relations with
GAE, and conducts node classification with GAT for the
study of the effect of genetic mutations on sleep disorders.
METHODS

Research design

The overall research pipeline is given in Figure 1.

Participant selection

Graph Based
Modelling to
understand
complex patterns

EEG feature extraction
& Microarchitecture
analysis

Figure 1: Research design.
Data

A total of 44 participants were selected based on stratified
random sampling from six neuro-disorders. Since the
availability of the participants was because of the
prevalence of the gene-related disorders was low, every
disorder was sampled randomly for five subjects and an
additional 14 healthy controls for the sake of balance in the
NCH dataset.”

Choice of selection of the EEG channels

According to the 10-20 electrode placement system of
AASM, Electrodes are named based on the area of the
brain they record from, letters denoting various areas.”!”
Each area has its own importance, represented in Figure 2.

Since this research is concerned with genetic disorders that
impact cognitive processes, decision-making, sensory
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integration, and executive functions, EEG C3-M2 and
EEG C4-M1 were excluded from analysis based on their
correspondence to the Centro-Parietal (CP) area and its
role in these functions.'!

Figure 2: Strategic placement of sensors.!?
Experimental setup

The experiment was executed in Python 3.12, and
dependencies were installed for the model accordingly.
Training was done with two RTX 2080-Ti GPUs. In the
training procedure, the RAdam optimizer was utilized with
a learning rate of 0.001 for 100 epochs. The batch size for
both training stages was fixed at 128, and the model
dimension (d model) was also fixed at 128. The random
seed was set to 42 for the entire training process for both
the training processes to achieve reproducibility.

Data preprocessing

Because this research involves EEG bandpower, only EEG
channels out of the polysomnographic (PSG) signal data
were utilized for preprocessing. To remove noise and keep
important frequency components, a bandpass filter 0.3-45
Hz was used in the EEG signals. This ensured that the data
obtained stayed within the standard EEG frequency range
for use in sleep studies. For every subject, pre-processed
EEG signals were segmented into 30-second epochs
according to the sampling rate of the dataset. The typical
recording rate of NCH data is 256 Hz, and thus all signals
were resampled to ensure compatibility across subjects. To
calculate the average bandpower for the delta band, an

estimate of the power spectral density (PSD) had to be
made. This was done using Welch's periodogram, which
was accomplished by averaging the consecutive, small
overlapping windows of the signal's Fourier transforms.'?
Sample PSD of EEG F3-M2 is given in Figure 3.

1e-6 PSD for EEG F3-M2 Across All Epochs

Power Spectral Density (uv- 2/Hz)

Figure 3: Power spectral density across EEG.
RESULTS

A GAE + GAT model was developed to explore
relationships ~ between =~ EEG  bandpower, sleep
microarchitecture abnormalities, sleep disorders, and rare
genetic disorders. By integrating event-level EEG with
participant-level data, the model uncovered patterns
overlooked by traditional methods. Distinct EEG
signatures were identified across sleep disorders, while
genotype-specific alterations such as decreased slow-wave
activity in Joubert syndrome and spindle density changes
in Neurofibromatosis-Noonan syndrome highlighted
genetic influences on sleep. Common EEG abnormalities
across conditions suggested shared pathways between
genetic mutations and sleep disruptions.

The fregs vector contains the x-axis (frequency bins) and
the psd vector contains the y-axis (power spectral density)

After the PSD is established, the bandpower can be
calculated by integrating the power values within the
frequency range of the given band. After the bandpower is
established, they are scaled using the

StandardScaler of sklearn. First five rows of the
bandpower for the EEG channels are given in Table 1.

Table 1: Sample EEG bandpower data of first participant.

| Chan ~Delta ~Theta _Alpha ~Sigma Beta ~ Gamma |
EEG LOC-M2 0.840 0.119 0.016 0.008 0.012 0.005
EEG F3-M2 0.875 0.097 0.016 0.005 0.005 0.002
EEG F4-M1 0.877 0.097 0.015 0.005 0.005 0.002
EEG C3-M2 0.875 0.104 0.011 0.003 0.005 0.001
EEG C4-M1 0.873 0.107 0.010 0.004 0.005 0.001
EEG O1-M2 0.795 0.156 0.027 0.010 0.010 0.003
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Model architecture
Overview of the proposed model

Rather than manually setting the graph structure from pre-
specified similarity measures (e.g., cosine similarity), the
model uses GAE to predict graph edges dynamically, the
GAT subsequently analyzes the created graph to label
subjects according to their EEG bandpower patterns. The
pipeline includes two main parts: GAT for edge prediction
and GAT for classification through attention-based
message passing. The schematic design flow is given in
Figure 4.

Tnput Layer Graph Convolution Layer Qutput Layer

!

Convolution Results
Original Diagram Tntroduction of Post- Graph Convolution Softmax Function ~ Classification
Structure diagram Structure Model Results

()
IO
LA

Figure 4: GAE-GAT model architecture.
Training

For the examination of sleep microarchitecture, we
identified three important events from EEG bandpower per
epoch:

Sleep spindles: Detected employing sigma band (11-16
Hz) with amplitudes higher than a pre-set threshold (75th
percentile) and lasting 0.5 to 2 seconds. This is calculated
by calculating the moving root mean square (RMS) of the
signal over a window size of 0.3 seconds. Spindles are
labelled where RMS is higher than the 75th percentile for
more than 0.5 to 2 seconds (duration threshold)."

Identify spindles with RMS above the 75th percentile for
a minimum of 0.5 to 2 seconds (threshold duration).

K-Complexes: Identified in the delta band (<1 Hz) as a
large negative peak followed by a positive deflection. This
is done using a low-pass filter with cut-off:1 Hz.

Slow waves: Drawn from the delta band (0.5-4 Hz) where
thresholds higher than the 80" percentile were designated
as significant. The bandpass filter (0.5-4 Hz) is used to
pick out the slow-wave components. The peaks lower than
the 80th percentile in terms of amplitude are detected as
Slow waves.

Training parameters

Training undergoes in three major aspects:

Analysis of sleep microarchitecture variations in sleep
disorders.

Analysis of sleep microarchitecture changes in uncommon
genetic disorders.

Identifying shared patterns connecting sleep and genetic
disorders.

The following are the input features for each participant:

EEG bandpower: Delta, Theta, Alpha, Sigma, Beta,
Gamma (over epochs).

Detected sleep events: Density and amplitude of sleep
spindles, K-complexes, and slow waves.

Clinical diagnosis: Diagnosed sleep and related genetic
condition.

The database consists of EEG bandpower scores for five
sleep stages (Wake, N1, N2, N3, REM) and has six genetic
conditions. The classification results for the selected 44
participants are given in Tables 2, 3, 4.

Goal 1: Examination of sleep microarchitecture
variation between sleep disorders

Each participant is represented as a node with EEG
bandpower and sleep event features, while edges are based
on feature similarity using cosine distance. The GAE
learns latent embeddings by reconstructing graph edges
with Binary Cross-Entropy loss and L2 regularization.
These embeddings are then used by a GAT to classify
sleep disorders using Cross-Entropy loss for multi-class
prediction.

Table 2: Goal 1 evaluation metrics.

Sleep disorder Precision Recall i

_ _ Score
(LSRG R 0910 0880 0.895
apnea
Insomnia 0.930 0.923  0.926
Restless leg syndrome 0.930 0.920 0.925
Narcolepsy 0.870 0.850  0.860
Sleep paralysis 0.920 0.890  0.905
Slecp disordered 0.890 0900 0.895
breathing

Average accuracy = 90.1%

Goal 2: Analyzing alterations in sleep microarchitecture
in rare genetic disorders

Each participant is modelled as a node with EEG features
and detected events, while edges are defined by the clinical
co-occurrence of sleep and genetic disorders. The GAE
learns embeddings by reconstructing the disorder co-
occurrence graph. These embeddings are then used by a
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GAT to classify participants based on their genetic
disorder.

Table 3: Goal 2 evaluation metrics.

Genetic disorder Precision Recall Lotk

_ _Score
LA LG 0930 0920 0.925
syndrome
Di George syndrome  0.880 0.880 0.880

Joubert syndrome
(tmem67 mutation)
Intractable Lennox-
Gastaut syndrome

0.940 0.920  0.930

with status 0.890 0.920  0.905
epilepticus

Neurofibromatosis- 0.920 0890 0905
Noonan syndrome

Chromosomal 0.910 0.930  0.920
deletion syndrome

Healthy controls 0.910 0.910 0.934

Average accuracy =91.4%

Goal 3: Discovering shared patterns connecting sleep
with genetic disorders

Participants are represented as nodes using EEG and
event-based features, with dynamic edges formed based on
similarities in EEG patterns and shared sleep or genetic
disorders. The GAE learns hidden embeddings to predict
new relationships between sleep and genetic disorders,
while the GAT uses attention-based message passing to
identify  participants ~ with  similar  phenotypic
characteristics.

Table 4: Goal 3 evaluation metrics.

Sicep Disorder A.ssoclated genetic Confidence
disorder score

Obstructive Dandy-Walker
0.92

sleep apnea syndrome
Sleep .
disordered ?ln(jfséie 0.87
breathing Y

Joubert syndrome
Narcolepsy (TMEM67 0.89

Mutation)

The overall average Precision, recall and F1 score are
given in Table 5.

Table 5: Overall performance.

| Metric ~Goal 1 Goal 2 Goal3 |
Accuracy 90.1% 86.90% 91.4%
Precision 0.908 0.918 0.91
Recall 0.894 0.910 0.89
ROC-AUC
(Link Pred.) ) ) 0.92

Link prediction accuracy between the pair of nodes in the
graph is computed as: the dot product of. the two
embedding vectors. This function is applied to the pair of
node embeddings.'> A higher dot product indicates a
higher probability of a link. Figure 5 shows how the similar
embeddings are grouped together.

Clusters of Subjects based on Combined Sleep & Demographics Data -
0.5

0.4

0.3 3.0

0.2

PCA Component 2
et
o
Cluster ID

-0.2 -0.1 0.0 0.1 0.2 03 0.4 0.5
PCA Component 1

Figure 5: 3D visualization of the node embeddings.
Comparison with other solutions

To begin with, it is particularly commendable that to the
best of our knowledge, no work has fully explored how
genetic diseases affect sleep microarchitecture as
evidenced in the sleep microarchitecture. The available
work mainly addresses isolating sleep disorders or genetic
syndromes separately without exploring their relationship
through neurophysiological signals. Our research fills this
gap by studying the common patterns among EEG event
abnormalities, sleep disorders, and orphan genetic
diseases. It has been previously investigated using EEG
biomarkers for sleep disorder diagnosis and graph models
for sleep stage estimation, but not in terms of how genetic
effects interfere with sleep physiology.'+!?

DISCUSSION

Literature for this research aggregates studies between
2019 and 2024 into three dimensions of relevance to the
research. First, research on the prediction of sleep
disorders is discussed, highlighting the use of machine
learning and deep learning models for early diagnosis and
risk estimation. Second, sleep microarchitecture studies
are reviewed, focusing on features such as sleep spindles,
K-complexes, and slow waves, their neurophysiological
roles, and associations with sleep disorders. Lastly, studies
applying GNN in biomedicine are overviewed, with
particular emphasis on modelling complex relationships in
PSG data and their strengths in disorder classification and
individualized sleep analysis.

Related work on sleep disorder classification

Wara et al in their research identifies 183 articles, whose
topic of discussion is sleeping disorder classification
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through Al Key findings are the use of brain waves, where
convolutional neural networks were the predominant
model utilized, with a performance metric as high as
83.75% accuracy.'® Deep learning techniques such as long
short-term memory (LSTM) and temporal convolutional
networks (TCN) have demonstrated the ability to learn
temporal relationships in sleep data, improving disorder
prediction accuracy while making models more
explainable through methods such as SHAP for
counterfactual explanations, which are essential for
clinical decision-making.!”!® Apart from deep learning
techniques, feature selection techniques such as the dipper
throated optimization algorithm have been applied to
maximize classification performance for the prediction of
sleep disorders. Feature set optimization of sleep health
and lifestyle data resulted in a minimum average error rate
of 0.719 with this approach, while logistic regression
yielded 95% accuracy, emphasizing measures of
personalized treatment and early detection.!®

Related work on sleep microarchitecture

A study on chronic insomnia disorder (CID) participants
and comorbid major depressive disorder (MDD)
highlighted strong associations between cognitive
functioning and polysomnography (PSG) scores.
Specifically, declarative memory correlated positively
with total sleep time (TST), while visuospatial memory
negatively correlated with rapid eye movement (REM)
sleep latency. Of note, the degree of depression and
insomnia was unrelated to cognitive impairment, and
changes in sleep architecture may be more relevant to
cognitive dysfunction than the severity of these illnesses.5
A survey research of 496 men with MS has found that 90%
of the subjects had low sleep quality, and there was a high
positive correlation between sleep facilitative behaviours
and sleep quality. Regression analysis also indicated that
sleep facilitative behaviours and age were predictors that
were significant, accounting for 15.2% of the variance in
sleep quality scores. However, the male orientation of the
study limits the generalizability of the findings to women
and individuals with other types of MS.2

Related work on association of genetic disorders and
sleep

Sleep disorders such as REM sleep behaviour disorder
(RBD), insomnia, excessive daytime sleepiness (EDS),
and periodic leg movement in sleep (PLMS) have been
positively linked with neurodegenerative diseases, with
the microarchitecture of sleep being disturbed in affected
individuals. For instance, SCA3 participants exhibit
decreased sleep efficiency, elevated arousal index, and
fragmented sleep compared to normal controls, reflecting
a role of important neurodegeneration in sleep
disturbances.?! Epigenetic modifications could also be
implicated in the concomitance among sleep, depression,
and brain plasticity. The findings corroborate the role of
sleep in synaptic plasticity and cognitive processes,

particularly during neurodevelopment. In spite of the
restriction caused by a small sample, the study provides
initial evidence of a relationship between sleep disorders
and epigenetic dysregulation of psychiatric and
neurodevelopmental disorders.??

Limitations and future scope of the study

One of the main limitations of this research is the omission
of other biomarkers (e.g., respiratory patterns, heart rate
variability) that might yield more accurate associations
between sleep abnormalities and genetic disorders. The
inclusion of these other biomarkers might enhance the
model's capacity to explain the intricate interplay between
sleep and genetic factors. Future work will involve
extending this method by combining a biofeedback
therapy model with GNN and EEG signals.

CONCLUSION

This framework enhances the understanding of how
genetic mutations affect sleep architecture, improving
diagnostic accuracy and offering novel biomarkers for
early detection. The findings support precision sleep
medicine by linking genetic markers to specific sleep
disturbances, paving the way for personalized
interventions and better health outcomes in children with
neurodevelopmental and neurodegenerative disorders.

Impact of this research
Early diagnosis and intervention

If genetic disorders interfere with normal sleep patterns
and result in sleep disorders, early detection via EEG
bandpower classification can provide early diagnosis in
children, allowing for timely interventions and better long-
term health outcomes.

Precision sleep medicine

By associating genetic markers with particular sleep
microarchitecture changes, this work can propel precision
medicine, enabling genotype-directed treatment strategies
that treat the particular sleep issues of rare genetic disorder
participants.
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