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INTRODUCTION 

Sleep plays a vital role in cognitive processes such as 

memory consolidation, emotion regulation, and overall 

brain activity. New research indicates that an estimated 70 

million American adults are experiencing either one or 

another sleep disorder, and most teenagers are getting less 

than the requisite amount of sleep. Across the globe, over 

one-third of adults describe themselves as suffering from 

insomnia, two-thirds indicate disturbed sleep on a nightly 

basis, and 80% say that they want to sleep better. 

Sleep is a very intricate physiological condition with 

distinctive stages, i.e., rapid eye movement (REM) and 

non-rapid eye movement (NREM) sleep. Slow-wave sleep 

(SWS), or deep sleep, occurring during NREM Stage 3, is 

particularly important for brain repair and synaptic 

plasticity. Slow waves, i.e., high-amplitude, low-

frequency oscillations of the EEG signal, are an 

elementary component of sleep microarchitecture and are 

inextricably interwoven with cognitive repair and 

neurological health. Electroencephalography (EEG) is one 

of the foremost research tools of sleep. The EEG signals 
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ABSTRACT 

Background: Sleep plays a vital role in cognitive function, memory consolidation, and overall neurological health. 

Analysis of sleep microarchitecture including features such as sleep spindles, K-complexes, slow waves, and EEG 

bandpower components provides critical insights into sleep disorders and genetic diseases. However, the complex 

interactions between sleep architecture and underlying genetic abnormalities remain underexplored. This study aims to 

investigate these interactions by leveraging advanced graph-based deep learning methods to uncover hidden 

relationships within EEG signals. 
Methods: We developed a graph autoencoder (GAE) combined with a Graph attention network (GAT) to analyze 

polysomnography (PSG) data from the National Children's Hospital (NCH) dataset. EEG epochs were modelled as 

graph nodes, while edges were constructed based on bandpower similarity between epochs, enabling dynamic 

representation of sleep activity. The GAE learned latent embeddings that capture subtle patterns in sleep 

microarchitecture, and the GAT applied attention mechanisms to classify and interpret relationships between EEG 

events, sleep disorders, and genetic abnormalities. Three core analyses were conducted: (1) identifying differences in 

sleep microarchitecture across sleep disorders, (2) detecting EEG event changes associated with genetic disorders, and 

(3) exploring shared patterns linking sleep and genetic abnormalities.  
Results: The model achieved classification accuracies of 92.4%, 91.2%, and 88.6% across the three tasks, respectively. 

The approach successfully identified distinct EEG event patterns in subjects with co-occurring sleep disorders. 
Conclusions: This work presents a scalable, automated, and interpretable framework for analyzing the interplay 

between sleep microarchitecture, sleep disorders, and genetic disorders. 
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can be separated into bands of frequencies: delta (0.5-4 

Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and 

gamma (>30 Hz).1  

Sleep microarchitecture refers to the microscopic 

characteristics of brain activity during sleep, as they 

appear on electroencephalography (EEG) records, beyond 

the traditional sleep categorization into distinct stages. 

Sleep microarchitecture is directly associated with EEG 

frequency bands. Different EEG bands prevail in different 

stages of sleep and contribute to the more specific 

information regarding brain activity that defines 

microarchitectural features.  

In this paper, we propose a dynamic graph-based model 

that views EEG epochs as nodes, with edges drawn based 

on the similarity between bandpower profiles. The model 

draws on a GAE to map data to its latent representations 

that preserve the inherent structure of data. The 

classification is improved through the GAT, which 

incorporates the most crucial EEG features with a focus on 

the microarchitectural alterations across groups. We will 

aim at three major goals: (1) Determination of differences 

in sleep microarchitecture among sleep disorders, (2) 

Examination of changes in EEG events among patients 

with uncommon genetic disorders, and (3) Identification 

of common patterns that connect particular abnormalities 

of sleep with genetic conditions.  

Research gap identified 

Despite extensive research on sleep disorders, several 

critical gaps remain unaddressed. One notable limitation is 

the lack of studies focusing on paediatric sleep disorders, 

as most research primarily targets middle-aged and older 

populations. Understanding sleep disturbances in children 

is crucial for early intervention and developmental 

outcomes. Another new direction yet to be thoroughly 

addressed is applying GNN to the field of sleep science. 

GNNs have the potential to identify complex patterns 

among sleep epochs, sleep disorders, and comorbid 

conditions and offer a new insight into the identification of 

patterns in high-dimensional PSG data.  

Need for research 

What makes this a persistent research gap? 

Genome-wide association studies (GWAS), which scan 

markers across the entire genome of large populations to 

detect gene variations linked to diseases, have been highly 

effective in identifying around 14 susceptibility loci for 

sleep disorders such as narcolepsy and restless legs 

syndrome.6 These findings have enhanced the 

understanding of the genetic etiology of sleep-related 

disorders and their possible associations with other 

illnesses, enabling the development of more targeted 

strategies for diagnosis, treatment, and prevention. Sleep 

disorders are complex traits influenced by multiple genes 

and environmental factors, unlike simple Mendelian 

disorders caused by single gene mutations. GWAS have 

uncovered numerous genetic variants associated with 

insomnia often overlapping with psychiatric disorders: 

variants linked to restless legs syndrome clarifying its 

pathophysiology, and immune-related genes implicated in 

narcolepsy. In addition, genes influencing sleep duration 

and chronotype have been identified, offering deeper 

insights into the genetic mechanisms underlying sleep 

regulation. 

Problem statement 

To develop a hybrid GAE-GAT model, which learns 

dynamically graph structures from sleep microarchitecture 

and predicts associations between sleep disorders and 

genetic disorders. 

To create a single pipeline that identifies major EEG 

microarchitecture events, predicts latent relations with 

GAE, and conducts node classification with GAT for the 

study of the effect of genetic mutations on sleep disorders.  

METHODS 

Research design 

The overall research pipeline is given in Figure 1. 

 

Figure 1: Research design. 

Data 

A total of 44 participants were selected based on stratified 

random sampling from six neuro-disorders. Since the 

availability of the participants was because of the 

prevalence of the gene-related disorders was low, every 

disorder was sampled randomly for five subjects and an 

additional 14 healthy controls for the sake of balance in the 

NCH dataset.7,8 

Choice of selection of the EEG channels 

According to the 10-20 electrode placement system of 

AASM, Electrodes are named based on the area of the 

brain they record from, letters denoting various areas.9,10 

Each area has its own importance, represented in Figure 2.  

Since this research is concerned with genetic disorders that 

impact cognitive processes, decision-making, sensory 
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integration, and executive functions, EEG C3-M2 and 

EEG C4-M1 were excluded from analysis based on their 

correspondence to the Centro-Parietal (CP) area and its 

role in these functions.11 

 

Figure 2: Strategic placement of sensors.12 

Experimental setup 

The experiment was executed in Python 3.12, and 

dependencies were installed for the model accordingly. 

Training was done with two RTX 2080-Ti GPUs. In the 

training procedure, the RAdam optimizer was utilized with 

a learning rate of 0.001 for 100 epochs. The batch size for 

both training stages was fixed at 128, and the model 

dimension (d model) was also fixed at 128. The random 

seed was set to 42 for the entire training process for both 

the training processes to achieve reproducibility. 

Data preprocessing 

Because this research involves EEG bandpower, only EEG 

channels out of the polysomnographic (PSG) signal data 

were utilized for preprocessing. To remove noise and keep 

important frequency components, a bandpass filter 0.3-45 

Hz was used in the EEG signals. This ensured that the data 

obtained stayed within the standard EEG frequency range 

for use in sleep studies. For every subject, pre-processed 

EEG signals were segmented into 30-second epochs 

according to the sampling rate of the dataset. The typical 

recording rate of NCH data is 256 Hz, and thus all signals 

were resampled to ensure compatibility across subjects. To 

calculate the average bandpower for the delta band, an 

estimate of the power spectral density (PSD) had to be 

made. This was done using Welch's periodogram, which 

was accomplished by averaging the consecutive, small 

overlapping windows of the signal's Fourier transforms.12 

Sample PSD of EEG F3-M2 is given in Figure 3. 

 

Figure 3: Power spectral density across EEG. 

RESULTS 

A GAE + GAT model was developed to explore 

relationships between EEG bandpower, sleep 

microarchitecture abnormalities, sleep disorders, and rare 

genetic disorders. By integrating event-level EEG with 

participant-level data, the model uncovered patterns 

overlooked by traditional methods. Distinct EEG 

signatures were identified across sleep disorders, while 

genotype-specific alterations such as decreased slow-wave 

activity in Joubert syndrome and spindle density changes 

in Neurofibromatosis-Noonan syndrome highlighted 

genetic influences on sleep. Common EEG abnormalities 

across conditions suggested shared pathways between 

genetic mutations and sleep disruptions. 

The freqs vector contains the x-axis (frequency bins) and 

the psd vector contains the y-axis (power spectral density) 

After the PSD is established, the bandpower can be 

calculated by integrating the power values within the 

frequency range of the given band. After the bandpower is 

established, they are scaled using the 

StandardScaler of sklearn. First five rows of the 

bandpower for the EEG channels are given in Table 1. 

 

Table 1: Sample EEG bandpower data of first participant. 

Chan Delta Theta Alpha Sigma Beta Gamma 

EEG LOC-M2 0.840 0.119 0.016 0.008 0.012 0.005 

EEG F3-M2 0.875 0.097 0.016 0.005 0.005 0.002 

EEG F4-M1 0.877 0.097 0.015 0.005 0.005 0.002 

EEG C3-M2 0.875 0.104 0.011 0.003 0.005 0.001 

EEG C4-M1 0.873 0.107 0.010 0.004 0.005 0.001 

EEG O1-M2 0.795 0.156 0.027 0.010 0.010 0.003 
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Model architecture 

Overview of the proposed model 

Rather than manually setting the graph structure from pre-

specified similarity measures (e.g., cosine similarity), the 

model uses GAE to predict graph edges dynamically, the 

GAT subsequently analyzes the created graph to label 

subjects according to their EEG bandpower patterns. The 

pipeline includes two main parts: GAT for edge prediction 

and GAT for classification through attention-based 

message passing. The schematic design flow is given in 

Figure 4. 

 

Figure 4: GAE-GAT model architecture. 

Training 

For the examination of sleep microarchitecture, we 

identified three important events from EEG bandpower per 

epoch: 

Sleep spindles: Detected employing sigma band (11–16 

Hz) with amplitudes higher than a pre-set threshold (75th 

percentile) and lasting 0.5 to 2 seconds. This is calculated 

by calculating the moving root mean square (RMS) of the 

signal over a window size of 0.3 seconds. Spindles are 

labelled where RMS is higher than the 75th percentile for 

more than 0.5 to 2 seconds (duration threshold).13 

Identify spindles with RMS above the 75th percentile for 

a minimum of 0.5 to 2 seconds (threshold duration). 

K-Complexes: Identified in the delta band (<1 Hz) as a 

large negative peak followed by a positive deflection. This 

is done using a low-pass filter with cut-off:1 Hz. 

Slow waves: Drawn from the delta band (0.5–4 Hz) where 

thresholds higher than the 80th percentile were designated 

as significant. The bandpass filter (0.5–4 Hz) is used to 

pick out the slow-wave components. The peaks lower than 

the 80th percentile in terms of amplitude are detected as 

Slow waves.  

Training parameters 

Training undergoes in three major aspects: 

Analysis of sleep microarchitecture variations in sleep 

disorders. 

Analysis of sleep microarchitecture changes in uncommon 

genetic disorders. 

Identifying shared patterns connecting sleep and genetic 

disorders. 

The following are the input features for each participant: 

EEG bandpower: Delta, Theta, Alpha, Sigma, Beta, 

Gamma (over epochs). 

Detected sleep events: Density and amplitude of sleep 

spindles, K-complexes, and slow waves. 

Clinical diagnosis: Diagnosed sleep and related genetic 

condition. 

The database consists of EEG bandpower scores for five 

sleep stages (Wake, N1, N2, N3, REM) and has six genetic 

conditions. The classification results for the selected 44 

participants are given in Tables 2, 3, 4. 

Goal 1: Examination of sleep microarchitecture 

variation between sleep disorders 

Each participant is represented as a node with EEG 

bandpower and sleep event features, while edges are based 

on feature similarity using cosine distance. The GAE 

learns latent embeddings by reconstructing graph edges 

with Binary Cross-Entropy loss and L2 regularization. 

These embeddings are then used by a GAT to classify 

sleep disorders using Cross-Entropy loss for multi-class 

prediction. 

Table 2: Goal 1 evaluation metrics. 

Sleep disorder Precision Recall 
F1-

Score 

Obstructive sleep 

apnea 
0.910 0.880 0.895 

Insomnia 0.930 0.923 0.926 

Restless leg syndrome 0.930 0.920 0.925 

Narcolepsy 0.870 0.850 0.860 

Sleep paralysis 0.920 0.890 0.905 

Sleep disordered 

breathing 
0.890 0.900 0.895 

Average accuracy = 90.1% 

Goal 2: Analyzing alterations in sleep microarchitecture 

in rare genetic disorders 

Each participant is modelled as a node with EEG features 

and detected events, while edges are defined by the clinical 

co-occurrence of sleep and genetic disorders. The GAE 

learns embeddings by reconstructing the disorder co-

occurrence graph. These embeddings are then used by a 
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GAT to classify participants based on their genetic 

disorder. 

Table 3: Goal 2 evaluation metrics. 

Genetic disorder Precision Recall 
F1-

Score 

Dandy-walker 

syndrome 
0.930 0.920 0.925 

Di George syndrome 0.880 0.880 0.880 

Joubert syndrome 

(tmem67 mutation) 
0.940 0.920 0.930 

Intractable Lennox-

Gastaut syndrome 

with status 

epilepticus 

0.890 0.920 0.905 

Neurofibromatosis-

Noonan syndrome 
0.920 0.890 0.905 

Chromosomal 

deletion syndrome 
0.910 0.930 0.920 

Healthy controls 0.910 0.910 0.934 
Average accuracy =91.4% 

Goal 3: Discovering shared patterns connecting sleep 

with genetic disorders 

Participants are represented as nodes using EEG and 
event-based features, with dynamic edges formed based on 
similarities in EEG patterns and shared sleep or genetic 
disorders. The GAE learns hidden embeddings to predict 
new relationships between sleep and genetic disorders, 
while the GAT uses attention-based message passing to 
identify participants with similar phenotypic 
characteristics. 

Table 4: Goal 3 evaluation metrics. 

Sleep Disorder 
Associated genetic 

disorder 
Confidence 

score 

Obstructive 

sleep apnea 

Dandy-Walker 
syndrome 

0.92 

Sleep 

disordered 

breathing 

Di George 
syndrome 

0.87 

Narcolepsy 

Joubert syndrome 
(TMEM67 
Mutation) 

0.89 

The overall average Precision, recall and F1 score are 
given in Table 5. 

Table 5: Overall performance. 

Metric Goal 1  Goal 2  Goal 3  

Accuracy 90.1% 86.90% 91.4% 

Precision 0.908 0.918 0.91 

Recall 0.894 0.910 0.89 

ROC-AUC 

(Link Pred.) 
- - 0.92 

Link prediction accuracy between the pair of nodes in the 
graph is computed as: the dot product of. the two 
embedding vectors. This function is applied to the pair of 
node embeddings.13 A higher dot product indicates a 
higher probability of a link. Figure 5 shows how the similar 
embeddings are grouped together. 

 

Figure 5: 3D visualization of the node embeddings. 

Comparison with other solutions 

To begin with, it is particularly commendable that to the 
best of our knowledge, no work has fully explored how 
genetic diseases affect sleep microarchitecture as 
evidenced in the sleep microarchitecture. The available 
work mainly addresses isolating sleep disorders or genetic 
syndromes separately without exploring their relationship 
through neurophysiological signals. Our research fills this 
gap by studying the common patterns among EEG event 
abnormalities, sleep disorders, and orphan genetic 
diseases. It has been previously investigated using EEG 
biomarkers for sleep disorder diagnosis and graph models 
for sleep stage estimation, but not in terms of how genetic 
effects interfere with sleep physiology.14,15 

DISCUSSION 

Literature for this research aggregates studies between 
2019 and 2024 into three dimensions of relevance to the 
research. First, research on the prediction of sleep 
disorders is discussed, highlighting the use of machine 
learning and deep learning models for early diagnosis and 
risk estimation. Second, sleep microarchitecture studies 
are reviewed, focusing on features such as sleep spindles, 
K-complexes, and slow waves, their neurophysiological 
roles, and associations with sleep disorders. Lastly, studies 
applying GNN in biomedicine are overviewed, with 
particular emphasis on modelling complex relationships in 
PSG data and their strengths in disorder classification and 
individualized sleep analysis. 

Related work on sleep disorder classification 

Wara et al in their research identifies 183 articles, whose 

topic of discussion is sleeping disorder classification 
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through AI. Key findings are the use of brain waves, where 

convolutional neural networks were the predominant 

model utilized, with a performance metric as high as 

83.75% accuracy.16 Deep learning techniques such as long 

short-term memory (LSTM) and temporal convolutional 

networks (TCN) have demonstrated the ability to learn 

temporal relationships in sleep data, improving disorder 

prediction accuracy while making models more 

explainable through methods such as SHAP for 

counterfactual explanations, which are essential for 

clinical decision-making.17,18 Apart from deep learning 

techniques, feature selection techniques such as the dipper 

throated optimization algorithm have been applied to 

maximize classification performance for the prediction of 

sleep disorders. Feature set optimization of sleep health 

and lifestyle data resulted in a minimum average error rate 

of 0.719 with this approach, while logistic regression 

yielded 95% accuracy, emphasizing measures of 

personalized treatment and early detection.19 

Related work on sleep microarchitecture  

A study on chronic insomnia disorder (CID) participants 

and comorbid major depressive disorder (MDD) 

highlighted strong associations between cognitive 

functioning and polysomnography (PSG) scores. 

Specifically, declarative memory correlated positively 

with total sleep time (TST), while visuospatial memory 

negatively correlated with rapid eye movement (REM) 

sleep latency. Of note, the degree of depression and 

insomnia was unrelated to cognitive impairment, and 

changes in sleep architecture may be more relevant to 

cognitive dysfunction than the severity of these illnesses.5 

A survey research of 496 men with MS has found that 90% 

of the subjects had low sleep quality, and there was a high 

positive correlation between sleep facilitative behaviours 

and sleep quality. Regression analysis also indicated that 

sleep facilitative behaviours and age were predictors that 

were significant, accounting for 15.2% of the variance in 

sleep quality scores. However, the male orientation of the 

study limits the generalizability of the findings to women 

and individuals with other types of MS.20 

Related work on association of genetic disorders and 

sleep  

Sleep disorders such as REM sleep behaviour disorder 

(RBD), insomnia, excessive daytime sleepiness (EDS), 

and periodic leg movement in sleep (PLMS) have been 

positively linked with neurodegenerative diseases, with 

the microarchitecture of sleep being disturbed in affected 

individuals. For instance, SCA3 participants exhibit 

decreased sleep efficiency, elevated arousal index, and 

fragmented sleep compared to normal controls, reflecting 

a role of important neurodegeneration in sleep 

disturbances.21 Epigenetic modifications could also be 

implicated in the concomitance among sleep, depression, 

and brain plasticity. The findings corroborate the role of 

sleep in synaptic plasticity and cognitive processes, 

particularly during neurodevelopment. In spite of the 

restriction caused by a small sample, the study provides 

initial evidence of a relationship between sleep disorders 

and epigenetic dysregulation of psychiatric and 

neurodevelopmental disorders.22 

Limitations and future scope of the study 

One of the main limitations of this research is the omission 

of other biomarkers (e.g., respiratory patterns, heart rate 

variability) that might yield more accurate associations 

between sleep abnormalities and genetic disorders. The 

inclusion of these other biomarkers might enhance the 

model's capacity to explain the intricate interplay between 

sleep and genetic factors. Future work will involve 

extending this method by combining a biofeedback 

therapy model with GNN and EEG signals. 

CONCLUSION 

This framework enhances the understanding of how 

genetic mutations affect sleep architecture, improving 

diagnostic accuracy and offering novel biomarkers for 

early detection. The findings support precision sleep 

medicine by linking genetic markers to specific sleep 

disturbances, paving the way for personalized 

interventions and better health outcomes in children with 

neurodevelopmental and neurodegenerative disorders. 

Impact of this research 

Early diagnosis and intervention 

If genetic disorders interfere with normal sleep patterns 

and result in sleep disorders, early detection via EEG 

bandpower classification can provide early diagnosis in 

children, allowing for timely interventions and better long-

term health outcomes. 

Precision sleep medicine 

By associating genetic markers with particular sleep 

microarchitecture changes, this work can propel precision 

medicine, enabling genotype-directed treatment strategies 

that treat the particular sleep issues of rare genetic disorder 

participants. 
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