DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20253590

# **Original Research Article**

# Correlation between pronated foot posture, movement quality and postural stability among college students: a pilot study

# Harish S. Krishna<sup>1</sup>, Sreejisha Puthu Kudi<sup>1</sup>, Anupa Kanchinadka<sup>2</sup>\*

<sup>1</sup>Department of Physiotherapy, Laxmi Memorial College of Physiotherapy, Balmatta, Mangaluru, Karnataka, India <sup>2</sup>Laxmi memorial College of Physiotherapy, Balmatta, Mangaluru, Karnataka. India

Received: 17 July 2025 Revised: 18 August 2025 Accepted: 16 October 2025

# \*Correspondence:

Dr. Anupa Kanchinadka,

E-mail: anupakp17@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** Postural control and movement mechanics are significantly influenced by foot position. Pronated foot posture has been associated with reduced movement quality and impaired balance. It is characterized by medial arch collapse and foot eversion. College students may be more prone to these musculoskeletal abnormalities as a result of their lifestyle choices and extended periods of inactivity.

**Methods:** The 22 college students between the ages of 18 and 25 participated in a pilot cross-sectional study. The Flamingo balance test (FBT) was used to test static balance, the Y-balance test (YBT) was used to measure dynamic balance, the foot posture index-6 (FPI-6) was used to measure foot posture, and the functional movement screen (FMS) was used to evaluate movement quality. The association between postural stability, movement quality, and pronated foot posture was ascertained using Pearson's correlation coefficient.

**Results:** FPI-6 showed a strong negative correlation with FMS (r=-0.72, p<0.001 right; r=-0.599, p=0.003 left) and static balance (r=-0.75, p<0.001 right; r=-0.55, p=0.008 left). No significant correlation was observed with dynamic balance (p>0.05). FMS was positively correlated with static balance (r=0.648, p=0.001 right; r=0.621, p=0.002 left) but not with dynamic balance (p>0.05).

**Conclusions:** The study found that college students who have pronated foot posture have considerably worse static and dynamic balance as well as lower movement quality. Early detection and foot posture-focused remedial measures may enhance functional results and avert further musculoskeletal problems.

Keywords: Pronated foot posture, FPI-6, FMS, Flamingo balance test, Y-balance test

### INTRODUCTION

The human foot serves as the lower kinetic chain's structural and functional base and is necessary for coordinated movement, load transmission, and posture control.<sup>1</sup> One important biomechanical component affecting musculoskeletal alignment and movement efficiency is foot posture, especially excessive pronation.<sup>2,3</sup>

An irregular gait and possible injury can result from a pronated foot, which is defined by medial arch collapse and greater subtalar eversion.<sup>4-6</sup>

Static foot alignment in several planes can be evaluated clinically with the FPI-6.<sup>7</sup> Pronated posture can change proprioceptive responses and neuromuscular activation, which can affect proximal joint mechanics.<sup>8-10</sup> The FMS, which examines seven basic movement patterns, is frequently used to evaluate the quality of movement.<sup>11,12</sup> Because poor foot alignment affects joint mobility,

stability, and motor control, it may be a factor in lower FMS scores. 13,14 Static and dynamic control are two categories for postural stability, which is a crucial aspect of function. The YBT gauges dynamic stability in several directions, whereas the FBT assesses static single-leg posture. 15-18 According to research, changed foot posture may impact functional tasks and raise the risk of falls or injuries by influencing postural sway, balance reactions, and weight distribution. 19,20

Foot posture, especially severe pronation, has been found to have a major impact on balance, motor control, and musculoskeletal alignment. There is still a dearth of integrative research that simultaneously assesses the relationship between pronated foot posture and movement quality and postural stability, particularly in young adult populations that are in good health, like physiotherapy students, even though a variety of studies have independently investigated the effects of this posture on lower limb mechanics and injury risk. According to recent research by Hosein et al those with pronated foot had altered neuromuscular responses and decreased ankle proprioception, which may impair postural and functional mobility.<sup>21</sup>Similar to this, Souza et al showed that young adults' dynamic stability performance was greatly impacted by foot misalignment, particularly while doing single-leg stance tasks.<sup>22</sup> Early postural deviations in physically active populations should be studied since they can remain asymptomatic but result in chronic compensatory behaviours and injury risk, according to studies by Ribeiro et al and Eguchi et al. 23,24 Additionally, Kim and Kim demonstrated how university students' basic movement patterns and balance were impacted by their altered foot mechanics.25

Finding relationships between foot posture, movement quality, and balance in physiotherapy students is crucial since they engage in physically demanding jobs and are supposed to mimic ideal movement patterns. Early screening, focused corrective exercise programs, and curriculum changes to improve physical preparedness and injury prevention can all benefit from this data. Any underlying biomechanical imbalances in these students' bodies may also affect their performance as future physicians who will be tasked with diagnosing and treating movement dysfunctions in others. In addition to improving their own musculoskeletal health, early detection and repair of such aberrations may also enhance their reputation and efficacy as movement specialists.

#### **METHODS**

This cross-sectional study was conducted between May and June 2025 among students of Laxmi Memorial College of Physiotherapy, Mangalore, Karnataka, India. Participants were selected based on defined inclusion and exclusion criteria. Initially, convenience sampling was employed for estimating sample size. Based on a previous study by Del-Castillo et al which reported that 6.6% of subjects with pronated feet demonstrated good movement

quality, and using a 95% confidence level with an absolute precision of 9%. However, a total of 22 participants were ultimately recruited using purposive sampling.

Ethical clearance for the study was obtained from the ethics committee of A. J. Institute of Medical Sciences, Mangalore. The objectives of this study were to comprehensively assess foot posture, movement quality, and postural stability among college students. Foot posture was evaluated using the FPI-6, Movement quality was assessed through the FMSing, static postural stability was measured using the FBT, while dynamic postural stability was assessed through the YBT. Inclusion criteria were college students aged 18-25 years with normal BMI, identified with pronated foot posture through FPI-6, not engaged in sports, gym, or training activities for the past two years, not using foot orthotics, and free from foot pain. Exclusion criteria included any negative or zero FPI component score, recent injuries or falls, history of upper or lower extremity surgery, acute or chronic ankle sprain, upper or lower limb pain, spinal deformities, systemic diseases, vestibular disorders, back pain, congenital foot deformities, and visual or balance impairments.

#### FPI-6

The FPI-6 was assessed with the participant standing in a relaxed double-limb stance. Observations were made from the anterior, posterior, medial, and lateral views. The assessment included six criteria: (1) talar head palpation, (2) curves above and below the lateral malleoli, (3) calcaneal alignment in the frontal plane, (4) bulging at the talonavicular joint, (5) medial longitudinal arch shape, and (6) forefoot-to-rearfoot abduction/adduction. Each criterion was scored from -2 (supinated) to +2 (pronated), and the total score ranged from -12 to +12. These scores were then recorded in the master chart.<sup>26</sup>

#### **FMS**

The FMS consists of seven tests: deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, trunk stability push-up, and rotary stability. Each test is scored on a scale from 0 to 3 across three trials, with the highest score recorded per test. A score of 0 indicates pain, 1 indicates incomplete or unstable movement, 2 denotes compensated movement, and 3 reflects correct movement without compensation. For bilateral tests, the lower score is recorded. The composite FMS score ranges from 0 to 21. 12

## FBT

Participants stood barefoot on a wooden box and flexed one leg by holding the same-side ankle toward the buttocks to maintain balance. Timing began on the investigator's cue. The maximum duration (in seconds) of static balance was recorded. The test ended upon postural loss, adjustment, or stepping off the box. Each leg was tested separately.<sup>27</sup>

#### **YBT**

For the YBT, three tape lines were arranged on the floor: one anterior and two at 135° angles posterolaterally and posteromedially, forming a Y-shape. The participant stood on one leg at the tape intersection and reached with the other leg in all three directions. Each leg was tested separately, and reach distances were normalized to limb length to compute the score.<sup>28</sup>

#### Statistical analysis

Statistical analysis was conducted using IBM SPSS Statistics for Windows, version 20.0. Descriptive statistics were expressed as mean and standard deviation, and demographic variables were presented as frequency and percentage. Karl Pearson's coefficient of correlation was used to examine the relationship between pronated foot posture, movement quality, and postural stability. A p<0.05 was considered statistically significant.

#### **RESULTS**

The study included 22 participants, with an equal distribution in age and gender-50% were under 24 years and 50% were 24 years or older, while 50% were male and 50% were female. Regarding leg dominance, 95.45% of

participants were right-leg dominant and only 4.55% were left-leg dominant. The mean height was  $161.58\pm4.94$  cm, weight was  $59.66\pm7.93$  kg, and BMI was  $22.79\pm2.17$  kg/m².

The participants showed a left leg FPI ranging from 6 to 12, with a mean of 9.40±2.06. FMSing scores ranged from 10 to 16, with a mean of 12.04±2.05. FBT times were 9.2-12.67 sec for the right leg (mean 11.23±0.94 sec) and 7.27-11.99 sec for the left leg (mean 10.20±1.53 sec). Y balance test (YBT) scores ranged from 60.99 to 85.71sec for the right leg (mean 74.84±6.11 sec) and 59.08 to 82.46 sec for the left leg (mean 71.32±6.06 sec).

The results show that FPI-6 scores for both right and left feet have a strong negative correlation with FMS (r=-0.72, p=0.00016 for right; r=-0.599, p=0.0032 for left), indicating that higher FPI is associated with poorer movement quality. Similarly, FPI-6 is strongly and negatively correlated with static balance (r=-0.75, p=0.000058 for right; r=-0.55, p=0.0076 for left), suggesting that abnormal foot posture reduces static balance performance. However, no significant correlation was observed between FPI-6 and dynamic balance for either foot (p>0.05), implying that foot posture may not influence dynamic balance.

Table 1: Mean FPI-6, FMS, static balance and dynamic balance.

| Variables           | Minimum | Maximum | Mean  | SD   |  |
|---------------------|---------|---------|-------|------|--|
| FPI-6 (R)           | 7       | 12      | 9.63  | 1.91 |  |
| FPI-6 (L)           | 6       | 12      | 9.40  | 2.06 |  |
| FMS                 | 10      | 16      | 12.04 | 2.05 |  |
| Static balance (R)  | 9.2     | 12.67   | 11.23 | 0.94 |  |
| Static balance (L)  | 7.27    | 11.99   | 10.20 | 1.53 |  |
| Dynamic balance (R) | 60.99   | 85.71   | 74.84 | 6.11 |  |
| Dynamic balance (L) | 59.08   | 82.46   | 71.32 | 6.06 |  |

Table 2: Correlation of FPI-6 with FMS, static balance and dynamic balance.

| Variables | Correlation with | R value | P value  | N  |  |
|-----------|------------------|---------|----------|----|--|
| FPI-6 (R) | FMS              | -0.72   | 0.00016  | 22 |  |
|           | Static balance   | -0.75   | 0.000058 | 22 |  |
|           | Dynamic balance  | -0.094  | 0.677    | 22 |  |
| FPI-6 (L) | FMS              | -0.599  | 0.0032   | 22 |  |
|           | Static balance   | -0.55   | 0.0076   | 22 |  |
|           | Dynamic balance  | -0.060  | 0.323    | 22 |  |

Table 3: Correlation of FMS with Static balance and dynamic balance.

| FMS (R) | Correlation with | R value | P value |
|---------|------------------|---------|---------|
|         | Static balance   | 0.648   | 0.0011  |
|         | Dynamic balance  | 0.160   | 0.476   |
| FMS (L) | Static balance   | 0.621   | 0.0021  |
|         | Dynamic balance  | 0.137   | 0.543   |

Correlation analysis showed that FMS has a strong positive correlation with static balance on both right (r=

0.648, p=0.0011) and left sides (r=0.621, p=0.0021), suggesting that better functional movement is associated with improved static balance. However, no significant

relationship was observed between FMS and dynamic balance on either side (p>0.05). This implies that while functional movement strongly influences static balance, it may not have a notable effect on dynamic balance.

#### **DISCUSSION**

This main goal of the study was to investigate the connection between college students' postural stability, movement quality, and pronated foot posture. Since maintaining effective movement patterns and balance depends heavily on foot alignment, it is imperative to comprehend this correlation. Few research have used integrated outcome measures such the FPI-6, FMS, FBT, and YBT to evaluate the interdependence of foot posture and balance effects in a young, healthy population, despite the fact that numerous studies have looked at these effects separately. This conversation highlights the therapeutic significance of the current findings and interprets them in the context of recent literature.

The study included 22 participants with equal age and gender distribution, where 95.45% were right-leg dominant and only 4.55% were left-leg dominant. FPI-6 of both the right and left legs showed a strong negative correlation with FMS (r=-0.72 and -0.599) and static balance (r=-0.75 and -0.55), but no significant correlation with dynamic balance. FMS of both the right and left legs showed a strong positive correlation with static balance (r=0.648 and 0.621), while no significant correlation was observed with dynamic balance.

According to a recent study by Garcia et al which evaluated 120 collegiate athletes, people with pronated feet performed noticeably lower on static balance tests than people with neutral foot posture. Similarly, pronated foot posture was linked to altered postural sway characteristics and impaired lower limb proprioception. Interestingly, we found no significant correlation between dynamic balance (YBT performance) and foot pronation. This is consistent with research by Turner et al who found no relationship between YBT and FPI distances in young individuals in good health. Their findings suggest that dynamic balancing tasks might activate more compensating neuromuscular responses.

Lerner et al reported that increased static postural control in young adults was connected with improved movement quality, which supports the considerable positive correlation between FMS scores and static balance (r=0.70-0.81).<sup>32</sup> Furthermore, a randomised study by Patel et al demonstrated that, in addition to static balance assessments, movement quality therapies, such as gait training and balance drills, significantly improved FMS scores.<sup>33</sup>

Intrinsic foot muscle (IFM) training has gained interest in addition to static exercises. In an intervention research by Morales-Rubio et al IFM strengthening greatly increased navicular height and static balance; however, gains in dynamic stability did not appear until after prolonged training.<sup>34</sup> These results were confirmed by a follow-up study conducted by Lee et al static balance and FMS scores were improved after 8 weeks of IFM programs; however, combined proprioceptive and strength training were needed for dynamic performance.<sup>35</sup>

#### Limitations

This study has a few limitations. The small sample size and single-center setting restrict the generalizability of the findings. Being cross-sectional, it cannot establish causality between foot posture, balance, and movement quality. The sample included only young adults with pronated feet, limiting comparisons with other foot types. Convenience sampling may have introduced bias, and only selected outcome measures were used without detailed biomechanical assessments. Finally, the lack of follow-up or intervention limits the clinical applicability of results.

#### **CONCLUSION**

According to the study's findings, college students who have pronated feet have much worse postural stability and lower movement quality. These results highlight the biomechanical function of the foot in promoting functional performance and preserving equilibrium. Through screening, focused exercises, and postural retraining, pronated foot posture can be identified early and corrected, potentially preventing musculoskeletal problems and improving young adults' physical resilience. It can be a good preventive measure to incorporate foot posture tests into regular exams, particularly for students who are physically active.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

## **REFERENCES**

- Azevedo RR, Figueiredo LFP, da Silva SR, Lima VP. Impact of foot posture on postural control and lower limb function: A cross-sectional study in young adults. Gait Posture. 2020;81:212-8.
- Buldt AK, Murley GS, Butterworth P, Levinger P, Menz HB, Landorf KB. Foot posture and its relationship to lower limb kinematics and kinetics: A systematic review. J Foot Ankle Res. 2022;15(1):14.
- 3. Neal BS, Griffiths IB, Dowling GJ, Murley GS, Munteanu SE, Franettovich Smith MM, et al. Foot posture as a risk factor for lower limb overuse injury: A systematic review and meta-analysis. Br J Sports Med. 2020;54(18):1079-87.
- Menz HB, Dufour AB, Riskowski JL, Hillstrom HJ, Hannan MT. Foot posture, foot function and low back pain: The Framingham Foot Study. J Gerontol Biol Sci Med Sci. 2013;68(12):1545-9.
- 5. Levinger P, Murley GS, Barton CJ, Cotchett MP,

- McSweeney SR, Menz HB. A comparison of foot kinematics in people with normal- and flat-arched feet using the Oxford Foot Model. Gait Posture. 2010;32(4):519-23.
- Zhang X, Li B, Wang L, Dong J, Sun L, Zhang Y. Association between foot posture and functional movement in athletes. J Sports Sci. 2021;39(8):887-95.
- 7. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clin Biomech. 2006;21(1):89-98.
- 8. Pohl MB, Messenger N, Buckley JG. Changes in foot and lower limb coupling due to systematic variations in step width. Gait Posture. 2010;32(4):441-5.
- 9. Vinther A, Junge A, Dvorak J, Aagaard P. Foot morphology, foot function and injury risk in elite football players: a prospective cohort study. Scand J Med Sci Sports. 2021;31(1):225-34.
- 10. Landorf KB, Kaminski TW, Menz HB, Murley GS. Foot function and injury risk: Exploring the evidence. J Orthop Sports Phys Ther. 2021;51(3):121-3.
- 11. Cook G, Burton L, Hoogenboom B, Voight M. Functional movement screening: The use of fundamental movements as an assessment of function-Part 1. Int J Sports Phys Ther. 2014;9(5):549-63.
- Dorrel B, Long T, Shaffer S, Myer GD. The Functional Movement Screen as a predictor of injury in National Collegiate Athletic Association Division II athletes. Int J Sports Phys Ther. 2015;10(5):647-58.
- 13. Smith CA, Chimera NJ, Warren M. Association of Y Balance Test reach asymmetry and injury in collegiate athletes. Int J Sports Phys Ther. 2015;10(5):560-7.
- 14. Lee DR, Kim L, Kim TH. Effects of foot posture on functional movement and dynamic balance in college students. J Exerc Rehabil. 2020;16(1):36-41.
- 15. Karacabey K, Saygin Ö, Özdağ S, Mavi HF, Gültekin T. The relationship between balance performance and anaerobic power in adolescent athletes. J Strength Cond Res. 2005;19(1):145-8.
- Shaffer SW, Teyhen DS, Lorenson CL, Warren RL, Koreerat CM, Straseske CA, Childs JD. Y-balance test: Reliability and association with lower limb injury in naval midshipmen. J Strength Cond Res. 2013;27(4):1155-62.
- 17. Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36(5):241-50.
- Taspinar F, Kabayel DD, Atalay NS, Torun S, Ozkul C, Atalay O. Assessment of balance in flatfooted and normal-footed individuals. Turk J Phys Med Rehabil. 2019;65(4):368-73.
- 19. Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J Athl Train. 2012;47(3):339-56.
- 20. Kandil FI, Hussein AMA, Abdelkader NA. Foot

- pronation and its effect on balance performance in young adults: A cross-sectional study. Int J Rehabil Res. 2022;45(2):170-6.
- 21. Mohammad Hosein E, Hamed H, Parisa R, Zahra M. Effects of foot pronation on ankle proprioception and balance in healthy young adults: A cross-sectional study. BMC Musculoskelet Disord. 2023;24(1):112.
- 22. Souza TR, Pinto RZ, Trede RG, Kirkwood RN, Fonseca ST. Late rearfoot eversion and changes in knee adduction moment during gait in subjects with and without patellofemoral pain syndrome. Clin Biomech. 2021;83:105288.
- 23. Ribeiro AP, João SMA, Dinato RC, Misu M, Sacco ICN. Effect of foot alignment on postural control and muscle activation in individuals with and without flat feet. Phys Ther Sport. 2022;57:44-51.
- 24. Eguchi A, Maruyama T, Takahashi T, Yamada K. Foot posture characteristics and postural stability in university students: A comparative study. J Back Musculoskelet Rehabil. 2023;36(2):327-34.
- Kim KH, Kim TH. Impact of abnormal foot posture on dynamic balance and functional movement in university students. J Exerc Rehabil. 2024;20(1):1-8.
- 26. Kothari A, Dixon PC, Stebbins J, Zavatsky AB, Theologis TN. The relationship between static foot posture and foot mobility in healthy adults. J Foot Ankle Res. 2023;16(1):10.
- 27. Santos MJ, Oliveira TP, Sousa MF, Ramos NK, Ribeiro F. Reliability and validity of single-leg stance tests for assessing postural control in young adults. J Bodyw Mov Ther. 2023;37:194-9.
- 28. Shaffer SW, Teyhen DS, Lorenson CL, Warren RL, Koreerat CM, Straseske CA, Childs JD. Y-balance test: Reliability and association with lower limb injury in naval midshipmen. J Strength Cond Res. 2013;27(4):1155-62.
- 29. Garcia NG, Salazar AM, Fernandez MM, Reyes JR. Static balance deficits in college athletes with pronated foot posture. Clin Biomech. 2023;98:105596.
- 30. Ramos-Lopez AR, Morales BR, Perez CF, Alvarez GA. Impact of foot posture on postural sway and proprioception in healthy adults. J Foot Ankle Res. 2024;17:22.
- 31. Turner KM, Lewis JS, Keenan A-M, Richards J. Functional movement and dynamic balance in pronated versus neutral feet among healthy young adults. Phys Ther Sport. 2022;55:30-6.
- 32. Lerner A, Kolboubi B, Levin O. Correlations between functional movement screen and static stability in young adults. J Sports Med Phys Fitness. 2023;63(4):456-63.
- 33. Patel V, Sharma R, Singh Y. Effects of movement quality interventions on balance and functional movement in university students. Int J Sports Phys Ther. 2024;19(2):112-21.
- 34. Morales-Rubio C, Mendez-Ortiz L, Beltran-Gallegos MA. Intrinsic foot muscle training improves foot posture and static balance: A randomized controlled trial. Phys Ther Sport. 2022;54:223-31.

35. Lee CY, Choomchuay A, Bowker P. Comparative effects of intrinsic and extrinsic foot muscle training on balance and functional movement. Foot Ankle Int. 2023;44(1):45-52.

Cite this article as: Krishna HS, Kudi SP, Kanchinadka A. Correlation between pronated foot posture, movement quality and postural stability among college students: a pilot study. Int J Res Med Sci 2025;13:4717-22.