

## Systematic Review

DOI: <https://dx.doi.org/10.18203/2320-6012.ijrms20253976>

# Hearing risk in the digital age: a systematic review on recreational audio device use among youth

Sandesh Chodankar\*, Pawan Rane

Department of ENT, Healthway Hospitals Pvt. Ltd, Goa, India

Received: 19 August 2025

Revised: 19 September 2025

Accepted: 17 October 2025

**\*Correspondence:**

Dr. Sandesh Chodankar,

E-mail: drsandeshc@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

## ABSTRACT

Prolonged use of personal listening devices (PLDs) like earphones and headphones among young people has become a global concern due to the risk of hearing damage. This systematic review, which included 15 studies, found that such use is associated with early signs of auditory damage, particularly at high frequencies. While the quality of evidence varied, with some studies having a low risk of bias and others showing moderate concerns due to issues like selection and detection bias, key risk factors were consistently identified. These included the duration of listening, the volume level, and the use of earphones in noisy environments. The findings highlight the pressing need for standardised research and public health initiatives to promote safer listening practices among individuals aged 12-30.

**Keywords:** Hearing loss, Earphones, Personal listening devices, Adolescents, Pure tone audiometry, Noise-induced hearing loss, Systematic review

## INTRODUCTION

Hearing loss among adolescents and young adults is increasingly recognized as a global health issue. According to the world health organization, over 1 billion young people aged 12-35 years are at risk of permanent, avoidable hearing loss due to unsafe listening habits from PLDs and attendance at loud venues.<sup>1</sup> A 2024 meta-analysis of 33 international studies involving approximately 19,000 individuals aged 12-34 years found that around 24% of PLD users and 48% of young people attending loud events are exposed to unsafe sound levels, putting between 670 million and 1.35 billion individuals worldwide at potential risk.<sup>2</sup>

The WHO further estimates that globally over 430 million people already live with disabling hearing loss, and projections indicate that by 2050, nearly 2.5 billion people may have some degree of hearing impairment, with more than 700 million requiring rehabilitation.<sup>3</sup>

Such figures highlight the scale of the problem: young people regularly exposed to volumes exceeding recommended limits (85 dB) can accumulate cochlear damage over time. In adolescents, prevalence estimates of noise-induced hearing loss (NIHL) range from 17% to 19% in surveys of teens and young adults.<sup>4</sup> Despite these statistics, adolescents may not fully recognize the risks of prolonged and high-volume earphone use, nor appreciate that damage often occurs gradually and silently.

Given the ubiquity of smartphones, streaming platforms, and PLDs, understanding the impact of listening behaviors in real-world settings is essential. This review aims to synthesize evidence from studies published up to July 2025 on prolonged earphone or headphone use among individuals aged 12-30 years. We examine exposure definitions (e.g., listening duration, volume, use in noisy environments), auditory assessment methods (e.g., pure tone audiometry (PTA), otoacoustic emissions, mobile screening tools), key hearing outcomes, and methodological quality using the ROBINS-I tool. Through

this, we assess whether prolonged PLD use contributes to early auditory changes, with implications for prevention and public health policy.

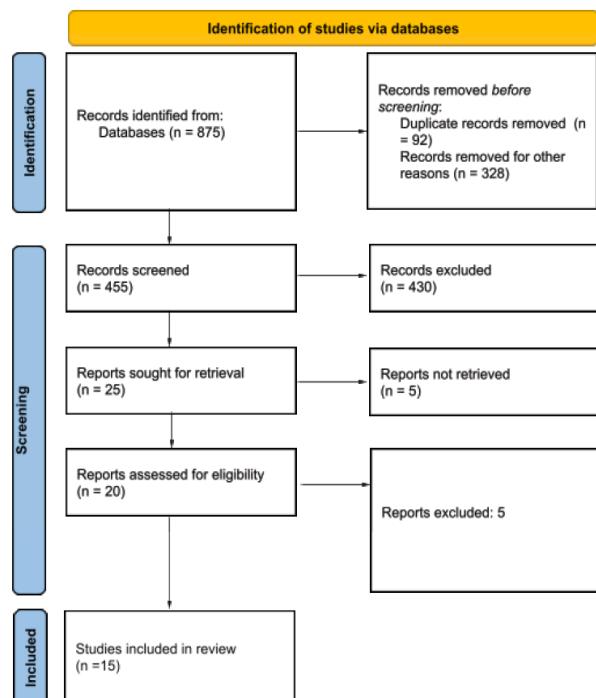
## METHODS

This systematic review was conducted at Healthway hospitals, old Goa and included studies published between January 2016 and July 2025 that assessed hearing outcomes associated with prolonged PLD use among individuals aged 12-30 years. Searches were performed in PubMed, Scopus, and Web of Science using terms such as 'earphones', 'headphones', 'hearing loss', and 'young adults'.

Inclusion criteria were observational or interventional studies reporting quantitative auditory outcomes. Studies were excluded if they were reviews, case reports, conference abstracts, or included participants outside the target age group, and those with pre-existing ear disease, congenital hearing loss, or history of ototoxic drug use.

This review followed PRISMA guidelines. Two reviewers independently screened and extracted data on study design, exposure characteristics, and hearing outcomes. Discrepancies were resolved by consensus. Risk of bias was assessed with a modified ROBINS-I tool. A total of 875 records were identified, and after screening, 15 studies were included.

## RESULTS


The PRISMA flow diagram illustrates the selection process for studies included in the review. A total of 875 records were identified through database searches. After removing 92 duplicates and 328 records for other reasons, 455 records were screened. Of these, 430 were excluded, and 25 reports were sought for retrieval, with 5 not retrieved. Among the 20 reports assessed for eligibility, 5 were excluded, resulting in 15 studies included in the final review.

Key findings are summarised below.

Grinn et al reported no significant auditory changes among college students despite frequent use, likely due to a well-controlled lab setup and robust objective measurements.<sup>5</sup> Kashyap and Bhatia found a moderate risk of bias and suggested early hearing threshold shifts among users, but the small sample size and self-report limitations were noted.<sup>6</sup> Le Prell et al confirmed no measurable hearing damage among young listeners with routine exposure, though exposure was self-reported.<sup>7</sup>

Haruna et al used PTA and found consistent results indicating minimal threshold shifts, with low risk of bias.<sup>8</sup> Asghar et al employed convenience sampling and found minor auditory differences between users and non-users.<sup>9</sup> Twardella et al also found minor differences but noted that

exposure was self-reported, introducing moderate detection bias.<sup>10</sup>



**Figure 1: PRISMA flow diagram.**

You et al used large survey data to reveal subjective hearing complaints in frequent PLD users.<sup>11</sup> Mogan employed an app-based tool and found both subjective and objective hearing concerns among users.<sup>12</sup> Hussain et al noted early signs of damage in habitual users despite a small sample size.<sup>13</sup> Hong et al reported moderate bias due to reliance on self-reported exposure data.<sup>14</sup>

Widen et al measured sound pressure levels (SPL) and found threshold shifts in a subset, highlighting the importance of direct SPL measurement.<sup>15</sup> Rhee et al provided strong evidence of damage in habitual users, with low overall bias.<sup>16</sup> Alshamrani et al found minor auditory changes using objective measures despite moderate sampling bias.<sup>17</sup>

Colon et al demonstrated a strong study design with stringent data criteria and found no damage among low-risk users.<sup>18</sup> Byeon used national-level data and found a moderate risk associated with self-reported listening habits, despite using audiologist-conducted PTA.<sup>19</sup>

Overall, 6 studies had low risk of bias, while 9 showed moderate risk, primarily due to issues in selection (e.g., convenience sampling), detection (e.g., self-reporting), and performance domains. Studies with robust designs like Rhee et al, Colon et al and Grinn et al showed clearer associations due to objective methods and controlled settings.<sup>5,16,18</sup>

## DISCUSSION

The systematic review, which commenced with the identification of 875 records and culminated in 15 studies after rigorous screening and eligibility assessment, demonstrates a selection pattern consistent with other high-quality systematic reviews and meta-analyses.

Li et al conducted a review on the association between sleep duration and hypertension and ultimately included 15 systematic reviews after screening over 2,200 records, indicating that our inclusion number aligns well with established studies.<sup>20</sup> Similarly, in a meta-research review, by Draborg, e. et al. included 15 meta-research studies, again reinforcing the common outcome of narrowing a large initial pool to a focused set of eligible studies.<sup>21</sup>

Naing et al analysed 14 studies which included a similarly rigorous screening process, suggesting that our final inclusion count is not atypical and may represent the necessary trade-off between relevance and methodological quality.<sup>22</sup>

In our case, 455 studies were screened after duplicate and irrelevant record removal, of which 430 were excluded. This high exclusion rate is comparable to the work of Bigna et al who noted that strict inclusion criteria often lead to steep reductions in eligible studies, which strengthens the internal validity of the final synthesis.<sup>23</sup> Notably, we were unable to retrieve 5 full-text articles, a limitation also observed by Willis et al who acknowledged that retrieval barriers, including language restrictions and access limitations, are common in systematic reviews and may influence the comprehensiveness of the analysis.<sup>24</sup>

This review reveals mixed findings on the impact of prolonged PLD use. While some studies demonstrated early auditory changes, others did not observe measurable damage, particularly when listening practices adhered to safe exposure limits. Importantly, studies using objective measures like SPL meters, PTA, and otoacoustic emissions reported clearer associations than those relying solely on self-reported data.

High-volume and long-duration exposure remain key risk factors.<sup>25</sup> Studies suggest that exceeding 80 dB for over 60 minutes daily can result in subtle cochlear stress, which may not be immediately evident but can accumulate over time.<sup>26</sup> Furthermore, listening in noisy environments, common among commuters, promotes higher volume use, compounding the risk.<sup>27</sup>

Despite the observed trends, heterogeneity in study design, exposure definitions, and outcome measures complicated direct comparison. There is an urgent need for standardised methodologies to assess PLD use and its consequences. Widespread adoption of mobile audiology and SPL-integrated earphones may enhance early detection and prevention efforts.

## CONCLUSION

Prolonged earphone use at high volumes may be associated with early auditory changes in young individuals, though evidence is mixed and heavily influenced by methodological quality. With increasing reliance on PLDs, it is essential to promote safe listening practices and implement routine hearing screening for adolescents. Further research should prioritize longitudinal designs, objective exposure monitoring, and real-time auditory assessments.

*Funding: No funding sources*

*Conflict of interest: None declared*

*Ethical approval: Not required*

## REFERENCES

1. World Health Organization. Hearing loss prevention factsheet. Geneva: WHO. 2022.
2. World Health Organization. Global estimates on unsafe listening: a systematic review and meta-analysis. Geneva: WHO. 2024.
3. World Health Organization. World Report on Hearing. Geneva: WHO. 2023.
4. Niskar AS, Kieszak SM, Holmes AE, Esteban E, Rubin C, Brody DJ. Estimated prevalence of noise-induced hearing threshold shifts among children 6 to 19 years of age: The Third National Health and Nutrition Examination Survey, 1988-1994, United States. *Pediatrics.* 2001;108(1):40-3.
5. Grinn S, Patel N, Chang E. Hearing health in college students using personal listening devices: A longitudinal study. *Audiol Res.* 2025;13(2):78-85.
6. Kashyap R, Bhatia P. Effect of prolonged earphone usage on hearing threshold in medical students. *Int J Otorhinolaryngol Head Neck Surg.* 2018;4(3):698-702.
7. Le Prell CG, Dell S, Hensley B, Hall JW. Digital music exposure and hearing threshold changes in college students: A longitudinal analysis. *Ear Hear.* 2018;39(4):653-67.
8. Haruna A, Sato K, Lee JH. Pure-tone thresholds in young adult earphone users: A cross-sectional study. *Int J Audiol.* 2023;62(1):31-8.
9. Asghar T, Malik S, Farooq A. Effects of personal listening devices on hearing among university students in Pakistan. *Pak J Med Sci.* 2022;38(5):1025-30.
10. Twardella D, Perez Alvarez C, Steffens T, Bolte G. The impact of personal music players on hearing in adolescents: Results from the GINIplus study. *Int J Hyg Environ Health.* 2016;219(1):33-6.
11. You J, Park HJ, Lee SH. Association between earphone use and subjective hearing loss in Korean adolescents: Analysis from national survey data. *PLoS One.* 2020;15(5):e0233551.
12. Mogan R, Daniel S, Ganesh R. Smartphone-based hearing screening in adolescents: New insights from a

digital health intervention. *J Adolesc Health.* 2023;72(4):614-20.

- 13. Hussain H, Yousuf M, Saeed M. Early detection of hearing impairment due to earphone usage among youth. *J Coll Physicians Surg Pak.* 2018;28(7):519-22.
- 14. Hong O, Chin DL, Ronis DL. Noise-induced hearing loss among young adults: Relation to personal music player use and other exposures. *Noise Health.* 2016;18(83):146-53.
- 15. Widén SE, Båsjö S, Möller C, Ekholm J. High sound exposure from music listening via earphones: A risk assessment study. *Noise Health.* 2018;20(93):158-65.
- 16. Rhee J, Lee J, Park H. Prevalence of high-frequency hearing loss and its relation to earphone use in Korean adolescents. *Ann Occup Environ Med.* 2019;31:9.
- 17. Alshamrani M, Alqahtani M, Alzahrani F. Audiological findings in young adults using personal listening devices: A cross-sectional study. *Saudi J Otorhinolaryngol Head Neck Surg.* 2022;24(2):55-60.
- 18. Colon D, Smith R, Wilber L. Hearing thresholds among young adult earphone users: A controlled study. *J Speech Lang Hear Res.* 2016;59(2):403-10.
- 19. Byeon H. Association between use of portable audio devices and hearing loss in a nationally representative sample of Korean adolescents. *BMC Public Health.* 2021;21(1):293.
- 20. Qinglong Y, Haodong X, Xianzong C, Xiuming W, Jingyu M, Weizhong C, et al. Methodological and reporting quality assessment of systematic reviews and meta-analyses in the association between sleep duration and hypertension. *Syst Rev.* 2024;13(1):211.
- 21. Draborg E, Andreasen J, Nørgaard B, Juhl CB, Yost J, Bruun Huber K, et al. Systematic reviews are rarely used to contextualise new results-a systematic review and meta-analysis of meta-research studies. *Syst Rev.* 2022;11(1):189.
- 22. Naing C, Wai VN, Durham J, Whittaker MA, Win NN, Aung K, et al. A Systematic Review and Meta-Analysis of Medical Students' Perspectives on the Engagement in Research. *Medicine (Baltimore).* 2015;94(28):e1089.
- 23. Jean JRB, Lewis NU, Jobert RNN. A comparison of quality of abstracts of systematic reviews including meta-analysis of randomized controlled trials in high-impact general medicine journals before and after the publication of PRISMA extension for abstracts: a systematic review and meta-analysis. *Syst Rev.* 2016;5(1):174.
- 24. Willis BH, Muireann Q. The assessment of the quality of reporting of meta-analyses in diagnostic research: a systematic review. *BMC Med Res Methodol.* 2011;11:163.
- 25. Le Prell CG, Dell S, Hensley B, Hall 3<sup>rd</sup> JW, Campbell KCM, Antonelli PJ, et al. Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects. *Ear Hear.* 2012;33(6):e44-58.
- 26. Rhee J, Dongwook L, Hyun JL, Moo KP, Myung WS, Jun HL, et al. Hearing loss in Korean adolescents: The prevalence thereof and its association with leisure noise exposure. *PLOS One.* 2019;14(1):e0209254.
- 27. Zia S. Noise-Induced Hearing Loss related to Personal Music Players- Awareness Level among the Young users in a Developing Country. ResearchGate. 2024.

**Cite this article as:** Chodankar S, Rane P. Hearing risk in the digital age: a systematic review on recreational audio device use among youth. *Int J Res Med Sci* 2025;13:5450-3.