pISSN 2320-6071 | eISSN 2320-6012

Review Article

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20253653

Periodontitis and malignancy: a growing concern

Nanditha Chandran*, Anil Melath, Subair Kayakool, Gokul Gopinath, Hamda Shahzadi

Department of Periodontics and Implantology, Mahe Institute of Dental Sciences and Hospital, Mahe, Puducherry, India

Received: 09 September 2025 **Accepted:** 16 October 2025

*Correspondence:

Dr. Nanditha Chandran,

E-mail: nandithachandran88@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Periodontitis is an inflammatory disease affecting the supporting structures of the tooth resulting in tooth mobility and tooth loss. Periodontitis has been consistently associated with a higher risk for head and neck cancer. Possible mechanisms include the chronic inflammatory nature of the disease, epigenetic damage to the epithelial cells by periodontal pathogens and dysbiosis. The present review focuses on various pathways of spread of head and neck cancers and the role of various periodontal pathogens in initiating this carcinogenesis.

Keywords: Periodontitis, Microorganisms, Risk, Cancer

INTRODUCTION

Periodontitis is an inflammatory disease of the periodontium caused by micro-organisms resulting in low grade systemic inflammation.¹ This inflammatory nature of periodontal disease explains the epidermological association between periodontitis and non-communicable disease.² Periodontitis is influenced by presence of many risk factors such as smoking, diabetes and contributing factors like overhanging restoration, open interproximal contact, occlusal trauma, mucogingival deformity, and several anatomical factors. Cancer has defined as a genetic disease and in some point, cancer can be changed to unmodifiable intrinsic factors, that cause accumulation of mutation in dividing cell population.3 Periodontitis and exposure to oral pathogens are also linked to increased risk of cancer incidence and mortality in epidemiological studies.4,5

This review article focuses on the relation between periodontitis and risk of cancer.

MICROORGANISMS ASSOCIATED WITH CANCER

The oral cavity harbors a remarkably intricate microbial ecosystem comprising up to 2000 species of bacteria,

viruses and fungi with a higher proportion of non-cultivable organisms.⁶

While most oral microorganisms coexist as commensals, certain opportunistic pathobionts with oncogenic potential can emerge, causing harm. Beyond their local effects on teeth and gums, members of the oral microbiome can translocate to various body sites, particularly in cases of periodontitis, where the compromised mucosal barrier and increased microbial load in pockets and saliva facilitate their spread. Periodontal pathogens that translocate and the pro-inflammatory mediators released into the bloodstream from the subgingival environment can interact and will make a way for initiation of carcinogenesis (Figure 1).

PERIODONTITIS AND ITS LINK WITH HEAD AND NECK CANCER

Periodontitis linked to head and neck cancer. It can be explained in five mechanisms.

Altered microbiomes can contribute to cancer development through toxins and metabolites that damage epithelial cell DNA. For example, *Aggregatibacter actinomycetemcomitans*' toxins and byproducts (ROS, and sulfides) have oncogenic potential, causing DNA damage

and mutations.^{8,9} Second pathway involves specific oral pathogens that can trigger epigenetic changes by regulating gene expression.¹⁰ A third pathway involves periodontitis-related microbiome promoting tumor growth through inflammation, increasing cell proliferation and inhibiting apoptosis, mediated by toll-like receptors (TLRs) and NF-κB activation.¹¹ The fourth pathway involves microbial impairment of epithelial barrier function through pathogen associated molecular patterns (PAMPs) and metabolites (e.g. lactic acid), enhancing carcinogenesis. 12 Examples include P. gingivalis and T. disrupting junction proteins.¹³ denticola periodontal pathogens can promote immune evasion by upregulating immune checkpoints like programmed death receptor (PD-L1), allowing tumor cells to evade T-cell responses and immunity.14

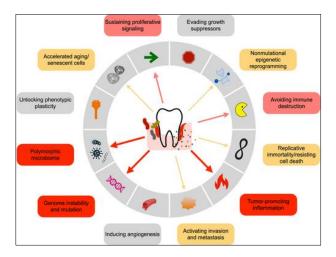


Figure 1: Proposed route for periodontitis leading to risk for cancer.

Association of periodontitis pathogens with likelihood of developing various cancer is inconclusive.

Lung cancer

Evidence suggests the role of *Acinetobacter*, *Pseudomonas*, *Prevotella*, *Veillonella* and *Streptococcus* in the tumor involved tissues. ¹⁵ Oral microbes can migrate to lungs through micro-aspiration, potentially causing lung diseases like COPD, pneumonia, and worsening COVID-19. ¹⁶

Breast cancer

Oral bacteria, such as *F. nucleatum*, have been found in cancerous breast tissues.¹⁷ Parhi et al studied the presence of *F. nucleatum* in breast tumors in mice, and found that binding to tumor expressed Gal-GalNAc was 100 times more than normal tissue.¹⁸

Prostate cancer

Periodontal pathogens (P. intermedia, P. gingivalis, T. denticola) were found in prostate secretions of patients

with chronic prostatitis and periodontitis.¹⁹ Colonized periodontal bacteria in the prostate may trigger chronic inflammation, potentially accelerating prostate cancer development and progression.²⁰

Esophageal and gastric cancer

Periodontal pockets may harbor *H. pylori*, a known carcinogenic bacterium. Periodontitis is linked to higher gastrointestinal cancer mortality in people with *H. pylori* infection.²¹

Pancreatic cancer

Microbial imbalance, along with smoking, pancreatitis and obesity is a potential risk factor.²² Studies found oral presence of *P. gingivalis* and *A. actinomycetemcomitans* and a high antibody levels against these periodontal pathogens are linked to higher risk for pancreatic cancer risk.^{23,24}

Colorectal cancer (CRC)

Recent studies show that bacteria present in oral cavity may be linked to cancers in the lower digestive tract. Specifically, *Fusobacterium nucleatum (F. nucleatum)* is commonly found in colorectal cancer tissues.²⁵

CONCLUSION

Periodontitis and its linked microbial imbalance may contribute to tooth decay and cancer development, particularly in head and neck cancers. Key mechanisms include inflammation, immune system disruption, and microbial imbalance, with specific microbiomes found in tumors often featuring periodontal pathogens.

While there's strong evidence linking periodontitis to some cancers, more research is needed to understand its role in others, like breast and prostate cancer. Future studies should explore the complex interactions between periodontal inflammation and cancer development, including the role of non-traditional pathogens. Advanced technologies and large-scale studies can help uncover new therapeutic targets and diagnostic markers, ultimately informing cancer prevention strategies.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

 Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89:S173-82.

- Morales A, Strauss FJ, Hämmerle CHF, Romandini M, Cavalla F, Baeza M, et al. Performance of the 2017 AAP/EFP case definition compared with the CDC/AAP definition in population-based studies. J Periodontol. 2022;93(7):1003-13.
- 3. Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347(6217):78-81.
- Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. Lancet Oncol. 2008;9(6):550-8.
- 5. Antonoglou GN, Romandini M, Meurman JH, Surakka M, Janket SJ, Sanz M. Periodontitis and edentulism as risk indicators for mortality: results from a prospective cohort study with 20 years of follow-up. J Periodontal Res. 2023;58(1):12-21.
- Proctor DM, Shelef KM, Gonzalez A, Davis CL, Dethlefsen L, Burns AR, et al. Microbial biogeography and ecology of the mouth and implications for periodontal diseases. Periodontol 2000. 2020;82(1):26-41.
- 7. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021;21(7):426-40.
- Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000. 2021;87(1):76-93.
- 9. Karpiński TM. Role of Oral microbiota in Cancer development. Microorganisms. 2019;7(1):20.
- 10. Gabusi A, Gissi DB, Grillini S, Stefanini M, Tarsitano A, Marchetti C, et al. Shared epigenetic alterations between oral cancer and periodontitis: A preliminary study. Oral Dis. 2023;29(5):2052-60.
- 11. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9(1):57-63.
- 12. Pang X, Tang YJ, Ren XH, Chen QM, Tang YL, Liang XH. Microbiota, epithelium, inflammation, and TGF-β signaling: an intricate interaction in oncogenesis. Front Microbiol. 2018;9:1353.
- 13. Takeuchi H, Sasaki N, Yamaga S, Kuboniwa M, Matsusaki M, Amano A. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathog. 2019;15(11):e1008124.
- Groeger S, Howaldt HP, Raifer H, Gattenloehner S, Chakraborty T, Meyle J. Oral squamous carcinoma cells express B7-H1 and B7-DC receptors in vivo. Pathol Oncol Res. 2017;23(1):99-110.

- 15. Pu CY, Seshadri M, Manuballa S, Yendamuri S. The Oral microbiome and lung diseases. Curr Oral Health Rep. 2020;7(1):79-86.
- 16. Baima G, Marruganti C, Sanz M, Aimetti M, Romandini M. Periodontitis and COVID-19: biological mechanisms and meta-analyses of epidemiological evidence. J Dent Res. 2022;101(12):1430-40.
- 17. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368(6494):973-80.
- 18. Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259.
- Estemalik J, Demko C, Bissada NF, Joshi N, Bodner D, Shankar E, et al. Simultaneous Detection of Oral Pathogens in Subgingival Plaque and Prostatic Fluid of Men With Periodontal and Prostatic Diseases. J Periodontol. 2017;88(9):823-9.
- Groeger S, Wu F, Wagenlehner F, Dansranjav T, Ruf S, Denter F, et al. PD-L1 Up-Regulation in Prostate Cancer Cells by Porphyromonas gingivalis. Front Cell Infect Microbiol. 2022;12:935806.
- 21. Zaric S, Bojic B, Jankovic Lj, Dapcevic B, Popovic B, Cakic S, et al. Periodontal therapy improves gastric Helicobacter pylori eradication. J Dent Res. 2009;88(10):946-50.
- 22. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609-16.
- Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: a populationbased nested case-control study. Gut. 2018;67(1):120-7.
- 24. Tan Q, Ma X, Yang B, Liu Y, Xie Y, Wang X, et al. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 2022;14(1):2073785.
- 25. Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, et al. Extensive transmission of microbes along the gastrointestinal tract. Elife. 2019;8:e42693.

Cite this article as: Chandran N, Melath A, Kayakool S, Gopinath G, Shahzadi H. Periodontitis and malignancy: a growing concern. Int J Res Med Sci 2025:13:5087-9.