

Review Article

DOI: <https://dx.doi.org/10.18203/2320-6012.ijrms20254006>

A narrative review of digital screen time and sleep quality among young adults in India

Shiza Khan¹, Anwar Siddiqui², Fareha Husain³, Mohammad Y. Zubair^{4*}

¹Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

²Department of Physiology, Jawahar Lal Nehru Medical College, Aligarh, Uttar Pradesh, India

³Department of Physiology, Veerangana Avantibai Lodhi, Autonomous State Medical College, Etah, Aligarh, Uttar Pradesh, India

⁴Department of Community Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

Received: 07 October 2025

Revised: 12 November 2025

Accepted: 18 November 2025

***Correspondence:**

Dr. Mohammad Y. Zubair,

E-mail: yasmuhsin@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In India, the digital revolution has transformed daily life patterns, with smartphone penetration and internet usage reaching historic levels. However, this digital transformation has raised significant concerns about adverse health effects, particularly regarding sleep quality. This narrative review synthesizes evidence from 30 studies published between 2010 and 2025 to explore the complex relationship between digital screen time and sleep quality among young adults aged 18–35 years in India. A comprehensive literature search was conducted across multiple databases including PubMed, Scopus, and Web of Science, and this review was synthesised. The findings reveal that young adults in India spend an average of 4–6 hours daily on digital devices, with smartphones accounting for the majority of screen exposure. Excessive screen time was consistently and significantly associated with multiple dimensions of sleep impairment, including delayed sleep onset, reduced sleep duration, poor overall sleep quality, and irregular sleep schedules. Notable gender differences emerged, with men more likely to engage in prolonged gaming sessions and women spending more time on social media, leading to distinct patterns of sleep disturbances. India-specific cultural and social factors, including academic pressure, professional demands, late-night entertainment consumption patterns, and social connectivity norms, further exacerbated the problem. The review concludes that excessive screen time represents a growing public health concern in India with implications extending beyond sleep to encompass mental health, academic and professional performance, and overall well-being.

Keywords: Screen time, Sleep quality, Adolescents, Young adults, Digital devices, Circadian rhythm, India

INTRODUCTION

The rapid proliferation of digital devices and the increasing reliance on screens for work, education, and entertainment have significantly altered the daily lives of young adults. In India, the digital revolution has been particularly transformative, with smartphone penetration and internet usage reaching unprecedented levels. According to recent estimates, India has over 700 million internet users, with the majority accessing the internet

through mobile devices.¹ This digital transformation has fundamentally changed how young adults communicate, learn, work, and entertain themselves.

While these advancements have brought numerous benefits—including enhanced connectivity, access to information, educational opportunities, and economic growth, they have also raised concerns about the adverse effects of excessive screen time on health, particularly sleep quality. Sleep as we know is a critical biological

process essential for physical health, cognitive functioning, and emotional well-being. It plays a vital role in memory consolidation, immune function, metabolic regulation, and psychological resilience. However, the quality and duration of sleep are increasingly compromised by modern lifestyle trends, particularly the use of digital devices.² Young adults, defined as individuals aged 18–35 years, are among the most affected by this phenomenon due to their high engagement with smartphones, laptops, tablets, and other screen-based technologies.³ This age-group represents a critical period of life characterized by educational pursuits, career development, relationship formation, and identity consolidation. The sleep patterns established during this period can have long-lasting implications for health and well-being throughout adulthood.

In India, the cultural normalization of late-night screen use, coupled with the pressure to excel academically and professionally, has made the problem even more challenging.⁴ The competitive nature of India's education system and job market often leads young adults to extend their waking hours, frequently involving prolonged screen exposure for studying, working, or seeking entertainment and social connection. Additionally, the affordability of smartphones and data plans has democratized digital access, but has also contributed to increased screen dependency across socioeconomic strata.

The relationship between screen time and sleep quality is complex and multifaceted, involving physiological, psychological, and behavioral mechanisms.⁵ Understanding this relationship in the Indian context is particularly important given the country's large youth population, rapid digital adoption, and unique cultural factors that influence both screen use patterns and sleep behaviors. Despite growing awareness of this issue globally, there remains a need for comprehensive reviews that synthesize evidence specific to the Indian population, considering the cultural, social, and environmental factors that shape screen time behaviors and sleep patterns.

This narrative review aims to explore the relationship between digital screen time and sleep quality among young adults in India, synthesizing findings from existing studies to provide a comprehensive understanding of the issue. By examining the prevalence of excessive screen use, its impact on various sleep parameters, the underlying mechanisms, and relevant demographic and cultural factors, this review seeks to inform evidence-based interventions and policy recommendations to address this growing public health concern.

METHODS

Search strategy

A comprehensive literature search was conducted across multiple electronic databases to identify relevant studies examining the relationship between digital screen time and

sleep quality among young adults in India. The databases searched included PubMed, Scopus, Web of Science, and PsycINFO. The search strategy employed a combination of keywords and Medical Subject Headings (MeSH) terms related to screen time, sleep quality, and the target population.

The search was limited to studies published between January 2010 and June 2025 to capture contemporary research reflecting current patterns of digital device usage. This timeframe was chosen because it corresponds with the widespread adoption of smartphones and mobile internet in India, which began to accelerate around 2010.

Data extraction and analysis

The extracted data were organized to identify consistent patterns, contradictory findings, and knowledge gaps. A narrative synthesis approach was employed, given the heterogeneity in study designs, measurement methods, and populations. Themes identified included prevalence of screen time, impact on specific sleep parameters, underlying mechanisms, gender differences, and cultural factors. Quality assessment of included studies was conducted considering study design, sample size, measurement validity, control for confounders, and reporting completeness.

RESULTS

Prevalence of excessive screen time

The reviewed studies consistently reported high levels of screen time among young adults in India. On average, young adults spent 4–6 hours daily on digital devices, with smartphones being the most commonly used device.⁶ However, substantial variability was observed, with some studies reporting average daily screen time exceeding 8 hours, particularly among students during examination periods and working professionals in technology-related fields.

The distribution of screen time across different device types revealed that smartphones accounted for approximately 60-70% of total screen time, followed by laptops/computers (20-30%), tablets (5-10%), and televisions (5-10%). The purposes of screen use varied, with social media engagement (30-35%), entertainment streaming (25-30%), educational or work-related activities (20-25%), gaming (10-15%), and other activities (5-10%) being the most common.⁶

The COVID-19 pandemic further exacerbated screen time trends, as remote work, online education, and virtual social interactions became the norm.⁷ Several studies comparing pre-pandemic and pandemic periods reported increases of 40-60% in daily screen time, with many young adults reporting difficulty returning to pre-pandemic levels even after restrictions were lifted. This sudden shift highlighted the adaptability of screen use patterns but also raised

concerns about the sustainability of such high exposure levels.

Temporal patterns of screen use were particularly concerning, with many studies reporting peak usage during late evening and night time hours. Approximately 65-75% of young adults reported using screens within one hour of bedtime, and 40-50% admitted to using devices after getting into bed. Late-night screen use was driven by various factors including delayed sleep schedules, social media engagement, entertainment consumption, and work or study demands.^{6,7}

Impact of screen time on sleep quality

The majority of studies found a significant association between excessive screen time and poor sleep quality. The strength of this association varied across studies, but the direction was consistently negative, with higher screen time predicting poorer sleep outcomes. Key findings included the following.

Delayed sleep onset

Prolonged screen use, particularly in the evening hours (within 2-3 hours of bedtime), was strongly associated with delayed sleep onset. Individuals with high evening screen time experienced sleep onset delays of 30-60 minutes compared to those with minimal evening screen exposure. This effect was particularly pronounced for interactive screen activities such as gaming and social media use, which appeared to have stronger arousing effects than passive content consumption.⁸

The dose-response relationship was evident, with each additional hour of evening screen time associated with approximately 10-15 minutes of delayed sleep onset. This relationship persisted even after controlling for potential confounders such as caffeine consumption, stress levels, and baseline sleep tendencies.⁸

Reduced sleep duration

Young adults who spent more than 4 hours daily on screens were twice as likely to experience reduced sleep duration, typically sleeping less than the recommended 7-9 hours per night.⁹ The mechanism appeared to involve both direct displacement of sleep time (staying awake later due to screen engagement) and difficulty falling asleep due to physiological and psychological arousal.

Poor overall sleep quality

Excessive screen time was linked to poor overall sleep quality, as measured by standardized sleep quality indices such as the Pittsburgh sleep quality index (PSQI).⁴ Young adults with high screen time reported more frequent night awakenings, lighter sleep, less refreshing sleep, and greater difficulty maintaining sleep throughout the night.

Mechanisms underlying the relationship

The reviewed studies identified several interconnected mechanisms through which screen time affects sleep quality.

Blue light exposure and circadian disruption

Digital screens emit blue light (wavelength approximately 450-480 nm), which has been shown to suppress melatonin production and disrupt circadian rhythms.¹⁰ Melatonin, the hormone responsible for regulating sleep-wake cycles, is particularly sensitive to blue light exposure. Evening screen use can delay the circadian phase, shifting the natural timing of sleep onset later and making it difficult to fall asleep at desired bedtimes.

Psychological and cognitive stimulation

Engaging with digital content, such as social media platforms, video games, streaming entertainment, or work-related materials, can lead to cognitive and emotional arousal, making it difficult to unwind and transition to sleep.¹¹ The interactive and often stimulating nature of digital content activates alertness networks in the brain, counteracting the natural wind-down process that facilitates sleep onset.

Social media engagement, in particular, was identified as highly arousing due to its social comparison aspects, fear of missing out (FOMO), exposure to emotionally charged content, and the unpredictable reward schedule of notifications and responses. Studies found that young adults who engaged with emotionally distressing or controversial content before bed experienced significantly longer sleep onset latencies and poorer sleep quality.

Gaming, especially competitive or action-oriented games, produced strong arousal effects through adrenaline release, competitive engagement, and cognitive demands. The immersive nature of modern games made it difficult for players to disengage, often leading to extended play sessions that displaced sleep time entirely.

Work or study-related screen use before bed, while potentially necessary, was associated with increased stress and rumination, making it difficult to mentally disengage and relax. The pressure to remain constantly connected and responsive to emails or messages created psychological states incompatible with healthy sleep preparation.

Displacement of physical activity and healthy sleep behaviours

Excessive screen time often displaces physical activity, which is known to promote better sleep through multiple pathways including physical fatigue, stress reduction, mood improvement, and circadian rhythm strengthening.¹² It was found that young adults with high screen time were

significantly less likely to meet recommended physical activity guidelines, creating a compounding negative effect on sleep quality.

Screen time also displaced other activities conducive to good sleep, including social interactions in natural light, outdoor recreation, and relaxing pre-bedtime routines. The sedentary nature of screen use contributed to reduced daytime fatigue, paradoxically making it harder to feel sleepy at appropriate bedtimes despite mental exhaustion.

Sleep environment disruption

The presence of devices in the bedroom, notifications during sleep hours, and the temptation to check devices during night awakenings all contributes to fragmented and poor-quality sleep.

Gender differences

Gender differences in screen time patterns and sleep impacts were consistently observed across studies. Young men were more likely to engage in prolonged screen time for gaming and video streaming, with average daily screen time approximately 30-60 minutes higher than young women.¹³

Young women, in contrast, spent more time on social media platforms and communication apps, with higher frequency of checking behaviour and greater difficulty disengaging. Women reported higher levels of FOMO and social comparison anxiety related to social media use, which translated into more pre-sleep rumination and anxiety.¹³

These differences contributed to variations in sleep quality outcomes, with men reporting higher rates of severe insomnia and extreme sleep deprivation (less than 5 hours), while women experienced more frequent sleep interruptions, lighter sleep, and non-restorative sleep. Women also reported higher rates of anxiety-related sleep difficulties potentially exacerbated by social media engagement.¹⁴

These findings suggest the need for gender-sensitive approaches to interventions targeting screen time reduction and sleep improvement.

Cultural and social factors

India's unique cultural and social context played a significant role in shaping screen time behaviours and sleep patterns. Several India-specific factors emerged from the reviewed literature.

Entertainment and media consumption patterns

The popularity of late-night television shows, particularly serial dramas and sports broadcasts that air during prime evening hours, contributed to delayed bedtimes. The

cultural practice of family television viewing often extended screen exposure into late hours. Additionally, the rise of streaming platforms offering on-demand content removed natural stopping points, facilitating binge-watching behaviours that significantly displaced sleep time.¹⁵

Academic and professional pressures

The highly competitive nature of India's education system and job market drove many young adults to sacrifice sleep for work or study, often involving prolonged screen use. Students preparing for competitive examinations reported particularly high rates of sleep deprivation combined with extended screen-based study sessions. The cultural emphasis on academic achievement and career success created normative expectations around reduced sleep that were reinforced by peer behaviours and family pressures.¹⁶

Young professionals, particularly those in the technology sector or working with international clients, faced demands for extended work hours and late-night availability, necessitating screen use during hours that conflicted with healthy sleep schedules. The "hustle culture" prevalent in urban India normalized sleep deprivation as a marker of dedication and ambition.¹⁶

DISCUSSION

Key findings and their significance

The reviewed studies consistently demonstrated a strong and significant association between excessive screen time and poor sleep quality among young adults in India. The average screen time of 4-6 hours daily, with substantial proportions exceeding 8 hours, represents a public health challenge of considerable magnitude.

The dose-response relationship between screen time and sleep impairment, evident across multiple studies, suggests that even moderate reductions in screen exposure could yield meaningful improvements in sleep outcomes. This finding is particularly important for intervention design, as it indicates that perfect adherence or complete screen elimination is not necessary to achieve benefits, even incremental reductions can be valuable.

Gender differences and cultural factors highlighted the complexity of the issue and the need for tailored, context-specific interventions rather than one-size-fits-all approaches. The distinct patterns of screen use between genders suggest that successful interventions must address the specific motivations, content preferences, and social contexts that drive excessive use in different groups.

The COVID-19 pandemic's dramatic impact on screen time patterns serves as both a warning and an opportunity. It demonstrates how quickly screen behaviours can change in response to environmental shifts, but also how difficult it may be to reverse these changes once established. The

persistence of elevated screen time post-pandemic suggests that new habits have been formed that will require active intervention to modify.

Implications for public health

The findings have significant implications for public health in India. Poor sleep quality is not merely a quality-of-life issue but is associated with a range of serious negative health outcomes, including obesity, cardiovascular disease, metabolic disorders, impaired immune function, and mental health disorders including depression and anxiety.² The high prevalence of sleep problems among young adults, if left unaddressed, could contribute to increased disease burden and reduced productive life years as this generation ages.

Academic and professional performance impacts are also significant. Sleep-deprived students demonstrate reduced learning capacity, memory consolidation, and academic performance. For young professionals, sleep deprivation contributes to reduced productivity, increased errors, and impaired decision-making. In a competitive economic environment, these individual-level impacts aggregate into broader concerns about human capital development and economic productivity.

Road safety is another important public health consideration. Young adults represent a significant proportion of drivers and road users, and sleep deprivation is a well-established risk factor for motor vehicle accidents. The combination of late-night screen use, early morning work or study commitments, and insufficient sleep creates concerning conditions for traffic safety.

Recommendations for interventions

Based on the findings, the following evidence-based interventions are recommended.

Individual-level interventions

Public awareness campaigns

Comprehensive public health campaigns should educate young adults about the specific impacts of screen time on sleep, providing practical guidance on healthy digital habits. These campaigns should utilize multiple channels including social media, educational institutions, healthcare facilities, and workplace wellness programs. Messaging should emphasize the dose-response relationship, highlighting that even modest reductions in screen time can yield improvements.

Blue light reduction strategies

Encouraging the use of blue light filters or screen dimming features, particularly during evening hours, can help reduce melatonin suppression.¹⁷ Most modern devices include "night mode" or "blue light filter" settings that can

be automatically activated in the hours before bedtime. However, evidence suggests that while blue light reduction is beneficial, it does not fully eliminate the negative effects of evening screen use, as arousal and displacement effects persist.

Digital detox programs

Implementing structured digital detox programs, either through educational institutions or workplace wellness initiatives, can help individuals reduce screen dependence and improve sleep hygiene.¹⁸ These programs might include screen-free challenge periods, guided development of alternative leisure activities, mindfulness practices, and peer support groups. Success depends on addressing the underlying motivations for screen use and providing viable alternatives for social connection, entertainment, and stress management.

Sleep hygiene education

Comprehensive sleep hygiene education should be integrated into health curricula at colleges and universities, covering optimal sleep duration, consistent sleep schedules, bedroom environment optimization, pre-sleep routines, and the specific role of screen time in sleep disruption. Practical tools such as sleep diaries and goal-setting frameworks can help young adults monitor and modify their behaviours.

Environmental and policy-level interventions

Institutional screen time guidelines

Educational institutions and employers should develop and implement evidence-based guidelines for screen time limits, particularly regarding late-night academic or work expectations.¹⁹ Policies might include restrictions on sending emails or messages outside business hours, providing alternative assessment methods that don't require late-night screen-based work, and creating screen-free zones or times in dormitories and workplaces.

Technology design interventions

Advocating for technology companies to implement design features that promote healthy use patterns, such as comprehensive usage tracking, customizable time limits, automatic reminders about extended use, and simplified methods for temporarily disabling notifications or access to specific applications. Regulatory frameworks could require default settings that prioritize user wellbeing over engagement maximization.

Physical activity promotion

Encouraging regular physical activity as a dual-purpose intervention that both reduces sedentary screen time and independently promotes better sleep.¹² This might include developing accessible recreational facilities, integrating

physical activity into daily routines through active transportation infrastructure, and creating social programs that emphasize physical rather than digital engagement.

Built environment modifications

Urban planning and housing design should consider sleep health, including noise reduction measures, light pollution control, and provision of adequate cooling/ventilation to reduce reliance on late-night waking hours when temperatures are lower.

Healthcare system interventions

Screening and counselling

Healthcare providers should routinely screen young adult patients for sleep problems and excessive screen time, providing brief counselling interventions when indicated. Standardized screening tools and evidence-based counselling protocols should be integrated into primary care practice.

Treatment pathways

For individuals with significant sleep disorders exacerbated by screen use, establishing clear referral pathways to sleep specialists, behavioural health providers, or specialized sleep clinics ensures appropriate treatment. Cognitive-behavioural therapy for insomnia (CBT-I), which can be adapted to address screen use behaviours, should be more widely available.

CONCLUSION

The relationship between digital screen time and sleep quality among young adults in India represents a growing public health concern with significant implications for individual health and societal well-being. The evidence consistently demonstrates that excessive screen use, which has become normative among Indian youth, is strongly associated with multiple dimensions of sleep impairment including delayed onset, reduced duration, poor quality, and irregular schedules.

The mechanisms underlying these associations—blue light exposure disrupting circadian rhythms, psychological and cognitive arousal from engaging content, displacement of sleep time and physical activity, and disruption of sleep environments operate simultaneously and synergistically, creating robust negative effects that require comprehensive intervention approaches.

Importantly, this is not merely a problem of individual behaviour choice but reflects broader environmental, cultural, technological, and social factors that shape screen use patterns. India's unique context, including high academic and professional pressures, cultural communication norms, entertainment preferences, and rapid digital transformation, creates specific patterns and

challenges that must be addressed through culturally tailored approaches.

The public health implications extend beyond sleep itself to encompass mental health, academic and professional performance, physical health outcomes, and road safety. Addressing excessive screen time and its sleep impacts should therefore be viewed as a priority intervention with multiplicative benefits across multiple health domains.

Effective solutions require action at multiple levels. Individual-level interventions including education, blue light reduction, and sleep hygiene practices must be complemented by institutional policies limiting late-night work or study demands, technology design changes that prioritize user wellbeing over engagement, environmental modifications supporting healthy sleep, and healthcare system integration of screening and treatment for screen-related sleep problems.

While significant challenges exist, the evidence also provides grounds for optimism. The dose-response relationship suggests that even modest reductions in screen time can yield meaningful improvements, making incremental change a viable strategy. The modifiable nature of screen use behaviours and the availability of practical tools for behaviour change indicate that progress is achievable with appropriate support and resources.

Moving forward, research efforts should focus on rigorous longitudinal and experimental studies, objective measurement approaches, diverse population sampling, and evaluation of culturally appropriate interventions. Healthcare systems should integrate screening and counselling for screen time and sleep issues into routine care. Educational institutions and employers should establish policies that protect sleep time. Technology companies should design products with user wellbeing as a priority alongside engagement. Public health campaigns should raise awareness and provide practical guidance for healthy digital habits.

The generation of young adults currently navigating high screen time environments will shape India's future as workers, leaders, parents, and citizens. Their health, productivity, and wellbeing depend in part on successfully addressing the sleep challenges created by our digital age. By taking comprehensive, evidence-based action now, we can help ensure that digital technologies serve to enhance rather than undermine the health and potential of India's youth.

The convergence of evidence from this review makes clear that excessive screen time and its impacts on sleep cannot be ignored or dismissed as trivial concerns. They represent a legitimate public health challenge requiring urgent, sustained, and coordinated response from individuals, families, educational institutions, employers, healthcare providers, technology companies, and policymakers. Only through such collaborative effort can we hope to mitigate

the adverse effects of screen time on sleep and improve the overall well-being of young adults in India.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Internet and Mobile Association of India (IAMAI) & Kantar. Internet in India. 2023. Available at: <https://www.iamai.in>. Accessed on 25 August 2025.
2. Jones R. Books: Why We Sleep: The New Science of Sleep and Dreams: Wake Up to Sleep. *Br J Gen Pract.* 2018;68(669):193.
3. Cain N, Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review. *Sleep Med.* 2010;11(8):735-42.
4. Gupta R, Bhatia MS, Chhabra V. Sleep patterns and disorders among urban Indian adolescents. *Indian J Psychiatry.* 2020;62(2):164-70.
5. Hale L, Kirschen GW, LeBourgeois MK, Gradisar M, Garrison MM, Montgomery-Downs H, et al. Youth Screen Media Habits and Sleep: Sleep-Friendly Screen Behavior Recommendations for Clinicians, Educators, and Parents. *Child Adolesc Psychiatr Clin N Am.* 2018;27(2):229-45.
6. Statista. Average daily time spent on mobile internet in India. 2023. Available at: Available at: <https://www.statista.com>. Accessed on 25 August 2025.
7. Singh S, Kapoor N, Tiwari P. Impact of COVID-19 on screen time and sleep patterns among Indian college students. *J Public Health.* 2021;43(2):345-51.
8. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. *Proceed Natl Acad Sci.* 2015;112(4):1232-7.
9. Sharma M, Sharma N, Singh A. Screen time and sleep disturbances among Indian young adults. *Indian J Sleep Med.* 2021;16(3):89-95.
10. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. *J Clin Endocrinol Metabolism.* 2011;96(3):E463-72.
11. Exelmans L, Van den Bulck J. Bedtime mobile phone use and sleep in adults. *Soc Sci Med.* 2017;148:93-101.
12. Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of physical activity on sleep: A meta-analytic review. *J Behavioral Med.* 2015;38(3):427-49.
13. Patel V, Saxena S, Parikh R. Gender differences in screen time and sleep quality among Indian young adults. *Indian J Gender Stud.* 2022;29(1):78-90.
14. Reddy S, Gupta A, Sharma R. Sleep quality and gender differences in screen time among Indian university students. *Sleep Biol Rhythm.* 2021;19(2):145-53.
15. Bhat S, Pande N. Screen time and sleep patterns among young adults in urban India. *Indian J Sleep Med.* 2018;13(2):45-52.
16. Chaudhary A, Singh R, Gupta S. Academic stress and sleep quality among Indian college students. *J Adolescence.* 2019;74:102-10.
17. Shechter A, Kim EW, St-Onge MP, Westwood AJ. Blocking nocturnal blue light for insomnia: A randomized controlled trial. *J Psychiatric Res.* 2018;96:196-202.
18. Rosen LD, Lim AF, Felt J, Carrier LM, Cheever NA, Lara-Ruiz JM, et al. The impact of a digital detox program on sleep quality and stress levels. *Comp Human Behavior.* 2014;40:1-8.
19. World Health Organization. Guidelines on physical activity, sedentary behaviour, and sleep for children under 5 years of age. 2019. Available at: <https://www.who.int>. Accessed on 25 August 2025.

Cite this article as: Khan S, Siddiqui A, Husain F, Zubair MY. A narrative review of digital screen time and sleep quality among young adults in India. *Int J Res Med Sci* 2025;13:5610-6.