

Case Report

DOI: <https://dx.doi.org/10.18203/2320-6012.ijrms20260018>

Guillain Barre syndrome and hyper-immunoglobulin E syndromes: an unusual correlation

Ajay Emani*, Ramakant Yadav, Midhun Mohan, Roopesh Singh Kirar

Department of Neurology, Uttar Pradesh University of Medical Sciences, Saifai, Etawah, Uttar Pradesh, India

Received: 18 December 2025

Revised: 08 January 2026

Accepted: 09 January 2026

***Correspondence:**

Dr. Ajay Emani,

E-mail: emaniajay@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Hyper immunoglobulin E (IgE) syndrome (HIES), also known as Job's syndrome, is a rare primary immunodeficiency disorder characterized by elevated levels of serum IgE, recurrent skin and lung infections, and eczema. Guillain-Barré syndrome (GBS) is an acute autoimmune condition that affects the peripheral nervous system, leading to muscle weakness and paralysis. This case report presents a unique instance of a 24-year-old male diagnosed with both HIES and GBS, exploring the clinical presentations, diagnostic challenges, and treatment approach.

Keywords: Hyper IgE syndrome, Guillain Barre syndrome, Autoimmune, Peripheral nervous system

INTRODUCTION

Hyper IgE syndrome (HIES) manifests with symptoms such as recurrent skin abscesses, pneumonia, eczema and a high serum IgE level, often exceeding 1000 IU/ml. Elevated IgE can also be detected in a spectrum of conditions like asthma, atopic eczema, vasculitis, anaphylaxis, parasitic infection, IgE myeloma, as well as HIES.¹ The binding of IgE to specific antigens causes mast-cell degranulation, resulting in an inflammatory reaction.² GBS typically follows an infection and is characterized by rapid onset muscle weakness which can progress to paralysis.³ Dysimmune neuropathy is an etiologically heterogeneous entity with the diverse clinical presentations.⁴ The coexistence of these two conditions in a single patient is exceptionally rare, posing significant diagnostic and therapeutic challenges.

CASE REPORT

Patient history

A 24-year-old male presented to our OPD with complaints of weakness of both upper and lower limbs since 12 days

before admission, which was sudden in onset, gradual in progression such that since 4 days before presentation he also developed hoarseness of voice, with difficulty in swallowing liquids as well as solids.

Two months ago, he had a history suggestive of eczema in the form of periorbital puffiness and redness which improved gradually with medical treatment.

Clinical presentation

On examination, patient was having flaccidity in both upper and lower limbs with absent reflexes, and absent plantar reflex. Patient gag reflex as well as cough reflex were weak. Patient single breath count (SBC) was 20.

Diagnostic workup

Laboratory tests

Routine blood tests showed elevated white blood cell counts and significantly high serum IgE levels (1500 IU/ml). Inflammatory markers in the form of ESR/CRP were elevated. However, ANA/ANCA profile were negative.

Electrophysiological studies

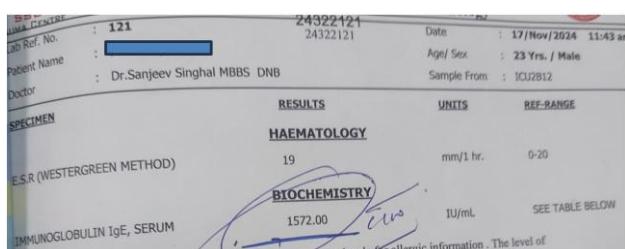
Nerve conduction studies were performed, revealing demyelinating polyneuropathy consistent with GBS.

Imaging

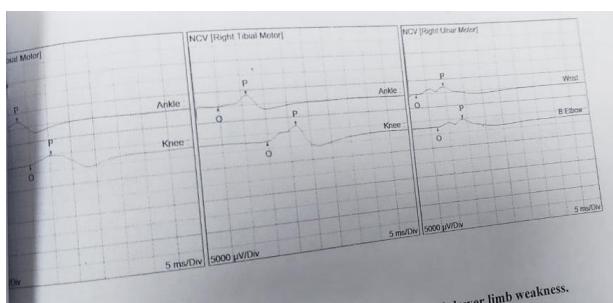
Magnetic resonance imaging (MRI) of the brain and spine showed no abnormalities, ruling out central nervous system involvement.

Treatment approach

Initial management


The patient was treated with intravenous immunoglobulin (IVIG) for GBS, which led to a gradual improvement in muscle strength. Mast cell inhibitors and anti-histaminic drugs were given for management of conditions associated with hyper-IgE-emia. Rest management involved providing supportive treatment and physiotherapy.

Long-term management


Physiotherapy was recommended to aid in the recovery of muscle strength and function.

Prognosis

The patient showed significant improvement in neurological function over the subsequent months. He also subsequently did not develop episodes of eczema or skin infections.

Figure 1: Haematology report showing elevated IgE levels.

Figure 2: Nerve conduction studies showing prolonged latency, decreased amplitude and remarkably decreased conduction velocity.

Table 1: Laboratory parameters.

Laboratory parameters	Report
ESR	49 mm/hr
Hemoglobin	13.5 gm/dl
Total cell counts	8500/mm ³
Platelet count	2.54 lac/mm ³
Absolute eosinophil count	240
Serum IgE levels	1572 IU/ml
Nerve conduction studies	Prolonged distal latencies with conduction block

Figure 3: MRI cervical spine showing no significant abnormality.

DISCUSSION

Although peripheral nerve involvement is not a well-known complication, a few cases of hyper-IgE-emia associated with subacute or chronic polyneuropathy have been reported.^{4,5}

As per our research, only one previous case of GBS with raised IgE was reported, although the occurrence could be coincidental. Elevated IgE might have played a role in the pathogenesis of this case of GBS.^{6,7}

In the pathogenesis of GBS, multiple factors including breakdown of blood-nerve barrier (BNB) and extent of inflammation are all relevant to producing auto-antibody-mediated nerve fiber injury.⁸ A healthy peripheral nervous system is tightly sealed by the BNB, which has a very low permeability to serum immunoglobulins.⁹

Therefore, in the absence of a local inflammatory response, diffusion of an antibody into the nerve is unable to initiate a functional deficit.⁸ Mast cells activated by IgE trigger disruption of the BNB as an initial GBS insult, and this is followed by macrophage activation.¹⁰ Therefore, hyper-IgE-emia may increase the magnitude and rate of neural damage in early GBS. Further research regarding the role of IgE in GBS might help to identify the mechanisms underlying the induction of GBS.

CONCLUSION

This case highlights the complexity of managing a patient with concurrent HIES and GBS. It underscores the importance of a multidisciplinary approach in diagnosing and treating such rare clinical intersections. Further research is needed to understand the potential immunological links between these two conditions and to develop targeted therapeutic strategies.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Johansson SG. The History of IgE: From discovery to 2010. *Curr Allergy Asthma Rep.* 2011;11:173-7.
2. Amin K. The role of mast cells in allergic inflammation. *Respir Med.* 2012;106:9-14.
3. Choi J, Rho JH, Kim BJ. Guillain-Barré syndrome associated with hyper-IgE-emia. *Ann Clin Neurophysiol.* 2017;19(2):148-50.
4. Kimura A, Yoshino H, Yuasa T. Chronic inflammatory demyelinating polyneuropathy in a patient with hyper IgE emia. *J Neurol Sci.* 2005;231:89-93.
5. Coutinho BM, Nascimento OJ, Freitas MR. Distal acquired demyelinating symmetric neuropathy in two patients with essential hyper-IgEmia. *Arq Neuropsiquiatr.* 2013;71:493-94.
6. Pate MB, Smith JK, Chi DS, Krishnaswamy G. Regulation and dysregulation of immunoglobulin E: a molecular and clinical perspective. *Clin Mol Allergy.* 2010;8:3.
7. Walker ME, Hatfield JK, Brown MA. New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? *Biochim Biophys Acta.* 2012;1822:57-65.
8. He L, Zhang G, Liu W, Gao T, Sheikh KA. Anti-Ganglioside antibodies induce nodal and axonal injury via Fc γ receptor-mediated inflammation. *J Neurosci.* 2015;35:6770-85.
9. Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. *J Exp Med.* 2007;204:2363-72.
10. Dines KC, Powell HC. Mast cell interactions with the nervous system: relationship to mechanisms of disease. *J Neuropathol Exp Neurol.* 1997;56:627-40.

Cite this article as: Emani A, Yadav R, Mohan M, Kirar RS. Guillain Barre syndrome and hyper-immunoglobulin E syndromes: an unusual correlation. *Int J Res Med Sci* 2026;14:xxx-xx.