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INTRODUCTION 

PLA2 are ubiquitous enzymes that hydrolyse the sn-2-

acyl bond of cell membrane phospholipids and 

lipoproteins and yield free fatty acids and 

lysophospholipids, precursors of various 

proinflammatory lipid mediators, including leukotrienes, 

prostaglandins and platelet-activating factor.
1
  

Mammalian PLA2 are subdivided into two major 

families: low molecular mass secretory enzymes (sPLA2) 

consisting of four types (I, II, V, and X), and high 

molecular mass cytosolic PLA2 existing as two types (IV 

or cPLA2 and VI or iPLA2).
2,3

 

sPLA2-IIA is highly expressed in several types of 

mammalian cells and tissues, and this enzyme acts as a 

critical modulator of cytokine-mediated synovial 

inflammatory diseases,
4
 rheumatoid arthritis

5,6
 and 

neoplastic disease.
7
 This group of enzymes has been 

reported to release arachidonic acid in some systems and 
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may provide the substrate for both cyclooxygenase 

(COX) and 5-lipoxygenase (5-LO) product formation in 

mouse bone marrow-derived mast cells.
8
 Elevated levels 

of sPLA2 have been reported in various body fluids from 

humans with several inflammatory conditions, including 

systemic inflammatory response syndrome encompassing 

sepsis and multiple organ trauma,
9
 acute pancreatitis

10
 

and inflammatory bowel disease.
11,12

 

The role of sPLA2 in various inflammatory conditions 

will be determined only when potent, specific inhibitors 

of sPLA2 are developed and evaluated in the clinic. As a 

step toward achieving this goal, we performed 

Quantitative Structure-Activity Relationship (QSAR) 

analysis to study the human non-pancreatic sPLA2 

inhibitory activity of a series of indole analogues. The 

present study was aimed at rationalizing the substituent 

variations of these analogues to provide insight for the 

future endeavours.  

QSAR is a type of analysis where some measures of 

chemical properties are correlated with biological activity 

to derive a mathematical illustration of the underlying 

Structure Activity Relationship (SAR).
13

 QSAR studies 

are unquestionably of great importance in modern 

chemistry and biochemistry. To get an insight into the 

SAR we need molecular descriptors that can effectively 

characterize molecular size, molecular branching or the 

variations in molecular shapes, and can influence the 

structure and its activities.
14

 

Design and development of new drugs is simplified and 

made more cost-effective because of the advances in the 

concepts of QSAR studies. A methodology of QSAR 

studies is one of the approaches to the rational drug 

design.
15

 The introduction of Hansch model, in early 

1960, enabled chemists to describe the structure activity 

relationships in quantitative terms and check those using 

statistical methods.
16

 QSAR are statistically derived 

models that can be used to predict the biological activity 

of untested compounds from their molecular 

structures.
17,18

 This concept helps to understand the role 

of physicochemical descriptors of compounds in 

determining the biological activity and in estimating the 

characteristics of the new and potent compounds, without 

the chemical synthesis of the compounds.
16

 

Docking various ligands to the protein of interest 

followed by scoring to determine the affinity of binding 

and to reveal the strength of interaction has also become 

increasingly important in the context of drug discovery.
19

 

Thus, the objective of the present work was to develop 

various QSAR models by Multiple Linear Regression 

(MLR) methods and to use the best QSAR model for the 

prediction of sPLA2 inhibitory activity of newly designed 

compounds by using Scigress explorer software suite. We 

also performed the molecular docking of the newly 

designed compounds against sPLA2 protein, 1DB4 (PDB 

ID) with bound ligand [3-(1-Benzyl-3-carbamoylmethyl-

2-methyl-1H-indol-5-yloxy)-propyl-]-phosphonic acid 

(8IN) extracted from Protein Data Bank (PDB), by 

utilizing fast, exhaustive docking software Molegro 

Virtual Docker.
20

 

METHODS 

Data set for 3D QSAR 

The first step in developing QSAR equations was to 

compile a list of compounds for which the experimentally 

determined inhibitory activity was known. The data set 

was divided into training set for model generation, and a 

test set for model validation, containing 20 and 12 

compounds respectively. The human non-pancreatic 

sPLA2 inhibitory activity data (IC50) and chemical 

structures of indole analogues for training set were 

retrieved from PubChem database.
21,22

 The biological 

activity (IC50) of the molecules were converted to their 

corresponding pIC50 values,
23

 and used as dependent 

variables in the QSAR calculations (Table 1). 

Table 1: Data set used in the generation of the QSAR 

models (Training set). IC50 values were converted to 

their corresponding pIC50 values.  

Compound PubChem ID 
IC50 

(μM) 

pIC50 

(μM) 

1 CID 10503444 6.13 5.212 

2 CID 10623151 0.04 7.397 

3 CID 10815003 0.022 7.657 

4 CID 10504075 0.266 6.575 

5 CID 44365370 0.015 7.823 

6 CID 10694479 0.074 7.130 

7 CID 10743057 0.04 7.397 

8 CID 10644791 0.203 6.692 

9 CID 10766584 0.016 7.795 

10 CID 24860461 0.12 6.920 

11 CID 10688272 38.1 4.419 

12 CID 10615829 0.26 6.585 

13 CID 10568884 11.13 4.953 

14 CID 10550162 1.27 5.896 

15 CID 10157472 0.189 6.723 

16 CID 3710 0.152 6.818 

17 CID 44365008 0.654 6.184 

18 CID 10710393 2.05 5.688 

19 CID 10666583 0.527 6.278 

20 CID 10620653 1.15 5.939 

       *Source: PubChem database 

Chemical structure construction and optimization 

The molecules were drawn using chemical drawing 

software „ACD/ChemSketch‟,
24

 and 3D optimization of 

molecules was done by „ACD/3D viewer‟.
25

  Structures 

of the training set and test set compounds are illustrated 

in Figure 1 and 2 respectively. The molecules were first 

optimized to their lowest energy state using Merck 
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Molecular Force Field-3 (MMFF3) method,
26

 using 

Scigress explorer software suite. To avoid the local stable 

conformations of the compounds, geometry optimization 

was run many times with different starting points of each 

molecule, and conformation with the lowest energy was 

considered for the calculation of the molecule descriptors. 

 

 

Figure 1: Structures of 20 training set of compounds used for QSAR analysis.   
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Figure 2: Structures of 12 test set of compounds. 

  

Calculation of physicochemical descriptors 

The structure of a molecule is expressed quantitatively in 

terms of its physicochemical descriptors, which are 

lipophilic, electronic and steric in nature. The aligned 

molecules were selected for calculation of the descriptors 

after inserting the biological activity as a dependent 

variable and the descriptors generated were selected as 

independent variables. List of physicochemical 

descriptors used in this study are summarised in Table 2. 

 

Table 2: List of physicochemical descriptors selected for this study.  

Abbreviation Full name Description 

SE Steric energy 

The steric energy of a molecule is the sum of the molecular mechanics 

potential energies calculated for the bonds, bond angles, dihedral 

angles, non-bonded atoms and so forth. 

HF Heat of formation 
The energy released or used when a molecule was formed from 

elements in their standard states 

LOG P Log p The octanol-water partition coefficient 

HOMO HOMO energy 
The energy required to remove an electron from the highest occupied 

molecular orbital (HOMO) 

POL Polarizability The molecule‟s average alpha polarizability 

SASA Solvent accessible surface area The molecular surface area accessible to a solvent molecule 

DP Dipole moment 
It can be defined as the product of magnitude of charge and distance of 

separation between the charge 

TE Total energy 
The total energy contained in an object was identified with its mass, and 

energy (like mass) 

IP Ionization potential 
The energy per unit charge needed to remove an electron from a given 

kind of atom or molecule to an infinite distance 

MR Molecular refractivity 
It is measure of the total polarizability of a mole of a substance and was 

dependent on the temperature, the index of refraction and the pressure 

1
X Connectivity index (order 1) 

It is the information in any molecular formula or model regarding the 

order in which the constituent atoms of the molecule were linked, 

irrespective of the nature of the linkage. 

EA Experimental activity A measured activity such as therapeutic activity or catalytic activity 
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Development and validation of QSAR models 

The QSAR studies were carried out to correlate 

physicochemical descriptors of 20 derivatives from the 

training set with their sPLA2 inhibitory activity. The 

physicochemical descriptors were taken as the 

independent variables and the human non-pancreatic 

sPLA2 inhibitory activity was taken as the dependent 

variable. Various QSAR models were developed by 

correlating more than one (stepwise MLR analysis 

implemented in Scigress explorer's “Project Leader” 

program) physicochemical descriptors at a time, with 

sPLA2 inhibitory activity of the compounds. Validation 

parameter, predictive r
2
 (r

2
 pred) was calculated for 

evaluating the predictive capacity of the models. The 

models were then cross-validated by the „leave one out‟ 

scheme,
27

 where a model was built with n-1 compounds 

and the n
th

 compound was predicted. Each compound was 

left out of the model derivation and predicted in turn. An 

indication of the performance of the model was obtained 

from the cross-validated r
2
CV (or predictive q

2
) coefficient 

which is defined as: 

q
2
 = (SD-PRESS/SD) 

Where, SD is the sum of squares deviation for each 

activity from the mean. PRESS (or predictive sum-of-

squares) is the sum of the squared difference between the 

actual and that of the predicted values when the 

compound is omitted from the fitting process. Cross-

validation coefficient q
2
 is considered as an indicator of 

the predictive performance and stability of a model. For a 

reliable model, the square of cross-validation coefficient 

q
2
 should be ≥ 0.5.

28
 The sPLA2 inhibitory activity of 20 

compounds in the training set and 12 compounds in the 

test set was predicted using the best QSAR model 

(Equation 1). For further validation of the accuracy of the 

predicted values by the best QSAR model, the 

experimental human non-pancreatic sPLA2 inhibitory 

activity of the 20 training set of compounds was 

correlated with their predicted sPLA2 inhibitory activity.  

Graphical analysis 

Graphical analysis was performed using Scigress 

explorer‟s plotting facilities to display molecules that 

were outliers in the database. Through scatter plot there 

was evaluation of regression in the graph. By plotting the 

actual activities along X-axis versus the predicted 

activities along Y-axis, the predicted ability of the model 

was assessed. From the regression line it was easy to 

predict the number of molecules lie on and away from 

regression line. 

Receptor X-ray structure 

The 3D coordinates of the crystal structure of human 

non-pancreatic sPLA2 in complex with  3- 1- enzyl-3-

carbamoylmethyl-2-methyl-1 - indol-5-yloxy -propyl- -

phosphonic acid    N   PD  code  1D 4  extracted from 

the protein data bank  www.rcsb.org/ ) was selected as the 

receptor model for docking experiments. 

Docking analysis 

We used the template docking available in Molegro 

Virtual Docker software and evaluated MolDock, Rerank 

and protein-ligand interaction scores from MolDock and 

MolDock [GRID] options. Template docking is based on 

extracting the chemical properties like the 

pharmacophore elements of a ligand bound in the active 

site and using that information for docking structurally 

similar analogues. We used the default settings, including 

a grid resolution of 0.30 Å for grid generation and a 15 Å 

radius from the template as the binding site. We used the 

MolDock optimizer as a search algorithm, and the 

number of runs was set to 10. A population size of 50, 

maximum iteration of 2000, scaling factor of 0.50, 

crossover rate of 0.90 and a variation based termination 

scheme for parameter settings were used. The maximum 

number of poses was set to a default value of 5. 

RESULTS 

Physicochemical descriptors listed in Table 2 were 

calculated for the training set of molecules using the 

Scigress explorer's “Project Leader” program.  uman 

non-pancreatic sPLA2 inhibitory activity (experimental 

activity) of all the training compounds was added 

manually in the data set and was correlated with the 

different physicochemical descriptors by stepwise MLR 

analysis and QSAR models were generated. The best 

model (equation 1) was validated using leave-one-out 

method and found to be statistically significant, with 

coefficient of determination (r
2
 pred) of 0.788 and cross-

validated r
2
CV (or predictive q

2
) coefficient of 0.692. 

Table 3: Predicted activity values of 10 test set of 

compounds calculated from the best QSAR model 

(equation 1).  

Test compound 
Predicted activity 

from model 1 

Compound (1) 7.253 

Compound (2) 6.42 

Compound (3) 7.146 

Compound (4) 6.305 

Compound (5) 6.296 

Compound (6) 7.261 

Compound (7) 6.447 

Compound (8) 7.152 

Compound (9) 6.645 

Compound (10) 7.359 

Compound (11) 7.107 

Compound (12) 7.454 
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Equation 1 (Model 1): M = 0.0768873*SE - 

0.693698*HF - 0.501317*HOMO - 0.327067*POL + 

0.0459367*SASA - 0.0589168*DP + 0.13583*TE - 

3.30125*IP - 0.0262338*MR + 1.69878*1X + 35.1266 

r2CV=0.692724 r2=0.788791 

Equation 1 was considered as the best model to predict 

the activities of 12 test set of compounds (Table 3).  

In order to validate our results we correlated the predicted 

activities of 20 molecules of the training set using the 

model expressed by equation 1 and compared with the 

experimental values. Predicted and the experimental 

activities were very close to each other evidenced by low 

values of residual activity (difference between 

experimentally observed activity and QSAR predicted 

activity) (Table 4). 

Table 4: Values of actual, predicted & residual 

activities of 20 training set of compounds.  

Compound 
Actual 

activity 

Predicted 

activity 

Residual 

activity 

Compound (1) 5.212 5.46 -0.248 

Compound (2) 7.397 7.303 0.094 

Compound (3) 7.657 7.515 0.142 

Compound (4) 6.575 7.349 -0.774 

Compound (5) 7.823 7.372 0.451 

Compound (6) 7.130 7.478 -0.348 

Compound (7) 7.397 7.442 -0.045 

Compound (8) 6.692 6.486 0.206 

Compound (9) 7.795 7.497 0.298 

Compound (10) 6.920 7.154 -0.234 

Compound (11) 4.419 7.155 -2.736 

Compound (12) 6.585 6.646 -0.061 

Compound (13) 4.953 7.13 -2.177 

Compound (14) 5.896 5.855 0.041 

Compound (15) 6.723 6.518 0.205 

Compound (16) 6.818 6.945 -0.127 

Compound (17) 6.184 6.631 -0.447 

Compound (18) 5.688 5.558 0.13 

Compound (19) 6.278 6.062 0.216 

Compound (20) 5.939 6.233 -0.294 

*Predicted and the experimental activities closely matches as 

evidenced by low values of residual activity (difference 

between experimentally observed activity and QSAR predicted 

activity) 

The graph between predicted and experimental activity of 

training set compounds by using model 1 is illustrated in 

Figure 3. Through this scatter plot, the compounds 

aligned on and around the regression line showed good 

correlation level between the predicted and experimental 

activity and compounds which were deviated from the 

regression line showed low correlation level between the 

predicted and experimental activity of training set of 

compounds. Variations in residual activity of training set 

of compounds are illustrated in Figure 4. 

 

Figure 3: Graph between predicted (vertical axis) and 

experimental activity (horizontal axis) of training set 

of compounds by using equation 1. Compounds 1, 2, 3, 

7, 8, 10, 12, 13, 14, 15, 16, 18 & 19 were aligned on and 

around the regression line showing good correlation 

between predicted and experimental activity. 

 

Figure 4: Graphical illustration of variation in 

residual activity (difference between actual and 

predicted activity) of 20 training set of compounds.   

Before the docking experiments, the protocol was 

validated. 1DB4 (PDB ID) bound ligand [3-(1-Benzyl-3-

carbamoylmethyl-2-methyl-1H-indol-5-yloxy)-propyl-]-

phosphonic acid (8IN) was docked into the binding 

pocket of sPLA2 protein to obtain the docked pose and 

the RMSD (Root Mean Square Deviation) of all atoms 

between these two conformations indicating that the 

parameters for docking simulation were good in 

reproducing the X-ray crystal structure. Therefore, indole 

analogues (12 test set of molecules) were docked into the 

binding pocket of sPLA2 protein. 1DB4 co-crystallized 

ligand resulted in MolDock score of -177.358 kcal/mol. 

Therefore, any molecule from the dataset which shows a 

score lower than -177.358 kcal/mol would be regarded as 

ligand with higher binding affinity and would act as 

inhibitor against sPLA2 protein. Our approach identified 

three compounds from the test set of molecules with 

better energy scores than the 1DB4 bound co-crystallized 

ligand. The docked energies (Moldock score) and H-bond 

interaction data of the three best compounds from the 12 

test set of molecules are given in Table 5. 
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Table 5: Interaction parameters of 1DB4 with the 

three best test set of compounds and co-crystallized 

[3-(1-Benzyl-3-carbamoylmethyl-2-methyl-1H- indol-

5-yloxy)-propyl-]-phosphonic acid (8IN) (Reference 

ligand).  

Compound 

MolDock 

score 

(kcal/mol) 

Rerank 

score 
H-Bond 

Compound (12) -183.162 -140.491 -4.44321 

Compound (10) -180.432 -135.669 -7.7549 

Compound (6) -178.368 -125.119 -5.91827 

Reference ligand -177.358 -135.4 -7.89931 

*H-Bond stands for Hydrogen Bond interaction score, 

Compound (12), in particular, showed high binding affinity 

with MolDock score (binding score) of -183.162kcal/mol 

against 1DB4 (PDB ID) in docking analysis 

Out of 12 test set of molecules, the best one was molecule 

12
th

 with predicted pIC50 value of 7.454 and binding 

energy score of -183.162 kcal/mol This compound was 

docked within the binding pocket of sPLA2 protein (PDB 

ID: 1DB4) forming H-bond interactions with Asp48, 

Cys44, His27, Gly29 and Gly31 residues. Interaction 

parameters of sPLA2 with the best compound are 

illustrated in Figures 5.  

 

Figure 5: Docked pose of test compound 12
th

 with 

PLA2 protein (PDB id: 1DB4). The ligand was docked 

deeply within the binding pocket region forming 

hydrogen bond interactions with Asp48, Cys44, His27, 

Gly29 and Gly31. (Image generated using Molegro 

Virtual Docker software).  

DISCUSSION 

Finding novel compounds at starting points for lead 

optimization is a major challenge in drug discovery. The 

number of methods and softwares which use the QSAR 

and docking approaches are increasing at a rapid pace. It 

has been clearly demonstrated that the approach utilized 

in this study was successful in finding novel sPLA2 

inhibitors from the data set developed by computational 

methods. The model generated from various 

physicochemical descriptors corresponds to the essential 

structural features of indole analogues and found to have 

significant correlation [coefficient of determination (r
2
) of 

0.788] with sPLA2 inhibiting activity. Substituted indole 

analogues designed by using computational approaches 

also showed good interactions with sPLA2 protein. 

Compound (12), in particular, showed high binding 

affinity with MolDock score of -183.162 kcal/mol against 

1DB4 (PDB ID) in docking analysis and predicted pIC50 

value of 7.454 in QSAR analysis. The ligand was docked 

deeply within the binding pocket region forming 

hydrogen bond interactions with Asp48, Cys44, His27, 

Gly29 and Gly31. This study shall help in rational drug 

design and synthesis of new selective sPLA2 inhibitors 

with predetermined affinity and activity and provides 

valuable information for the understanding of interactions 

between sPLA2 and the novel compounds and might pave 

the way towards discovery of novel sPLA2 inhibitors. The 

physicochemical descriptors used in QSAR analysis in 

this study were important in further lead optimization of 

the substituted indole derivatives. 
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