Correlation of hemoglobin with creatinine clearance, antioxidant status, lipid peroxidation and ceruloplasmin in patients with chronic kidney disease

Sheeba V.1*, Arun Kumar P.2, Swarnalatha P. K.1

1Department of Physiology, 2Department of Surgery, Academy of Medical Sciences, Pariyaram, Kannur, Kerala-670503, India

Received: 04 August 2016
Revised: 08 September 2016
Accepted: 08 September 2016

*Correspondence:
Dr. Sheeba V,
E-mail: sheeba.run34@yahoo.com

ABSTRACT

Background: Anaemia in CRF is caused primarily by a combination of depressed erythropoiesis and shortened erythrocyte lifespan caused by oxidative stress. Therefore, the present study was designed to investigate the correlation between Hb concentration and antioxidant and lipid peroxidation levels.

Methods: The study group consisted of 50 patients with chronic kidney disease who were on conservative treatment with the age group of 20 to 60 years. Based on the creatinine clearance values the patients were assigned in to 3 groups; Stage 3, Stage- 4 and Stage- 5 as per NKF DOQI guidelines. Control group consisted of 50 age and sex matched, non-diabetic, non-smoker healthy volunteers. About 5 ml of blood was collected and serum was used for the estimation of superoxide dismutase, ceruloplasmin and malondialdehyde and haemoglobin level using standard methods. The correlations between the different groups are performed by applying Pearson’s correlation test. The p value of ≤0.05 was taken as the level of significance.

Results: A positive correlation of Hb with creatinine clearance (r=0.46, p=0.001), SOD level(r=0.4, p=0.009), serum ceruloplasmin (r=0.3, p=0.07) was observed. Significant positive correlation was found between creatinine clearance and SOD level (r=0.4, p=0.008), ceruloplasmin (r=0.3, p=0.04). A negative correlation was obtained between serum malondialdehyde levels and haemoglobin concentration (r=-0.4, p=0.007) and between creatinine clearance and MDA levels (r=-0.4, p=0.01).

Conclusions: The study provides a better understanding of the biochemical parameters underlying anaemia in chronic kidney disease. The increased production of ROS and deficiency of antioxidant enzymes altered the oxidant and antioxidant equilibrium in the plasma of CKD patients.

Keywords: Ceruloplasmin, Chronic kidney disease, Creatinine clearance, Malondialdehyde, Haemoglobin, Superoxide dismutase

INTRODUCTION

The diseases of kidney which lead to progressive destruction and scarring of renal tissue are characterized by a common pattern of metabolic and functional change. The diseases that bring about the alterations are many and include diabetes mellitus, hypertension, non-diabetic glomerular disease, cystic kidney disease and tubule-interstitial disease. No matter what the nature of underlying disease process may be, the functional disorganization ultimately encountered differs little from one disease process to another. This uniformity of pathophysiologic disintegration was recognized by Bright as early as in 1836 and these disease processes which
follow the uniform course have since been collectively referred to as Chronic Bright’s disease.1,2

In CRF, compensatory and adaptive mechanisms maintain acceptable health until GFR is about 10-15mL/min and life sustaining renal excretory and homeostatic functions continue until GFR is <5mL/min. 3 As the GFR of the whole kidney falls, the still functioning nephrons produce an increased volume of filtrate (hyperfiltration) and their tubules respond appropriately by excreting fluids and solutes in amounts that maintain homeostatic balance.

In cases of chronic reduction in nephron number oxygen consumption by the remaining nephrons increases which lead to increased production of reactive oxygen species. This oxidative stress probably enhances not only tubular damage but also interstitial inflammation and fibrosis via release of proinflammatory and profibrotic molecules. Increased apoptosis of tubular cells has been reported in CKD and reactive oxygen species (ROS) is thought to play a role.4

Oxidative stress is involved in the pathogenesis of hypertension, endothelial dysfunction, neurological disorders, shortened erythrocyte lifespan, atherosclerosis and inflammation in CRF. Oxidative stress can cause hypertension in CKD by promoting ROS mediated inactivation of nitric oxide (NO), generation of vasoconstrictive isoprostanes (by oxidation of arachidonic acid) and resultant vasoconstriction. The combination of nitric oxide oxidation by ROS and depressed NO biosynthesis are largely responsible for endothelial dysfunction in CRF.

In addition, peroxynitrite, the reaction product of superoxide radical and NO, constitutes a strong oxidant molecule which is able to oxidize proteins, lipids and nucleic acids causing vascular cell damage.5 Finally superoxide anion facilitates oxidative modification of low density lipoprotein (LDL) that plays a key role in the formation of atherosclerotic lesions. ROS can inflict neurotoxicity via peroxidation of cell membrane phospholipids and cause excitotoxicity by facilitating glutamate release.6

Anaemia in CRF is caused primarily by a combination of depressed erythropoiesis and shortened erythrocyte lifespan. The latter is caused by oxidative stress via oxidation of cell membrane phospholipids, glutathione depletion and altered intracellular redox state. These processes deepen anaemia in CRF and make difficulties in its treatment.

In chronic kidney disease patients, the severity of anaemia increased with the progression of the disease. The majority of patients with chronic kidney disease had normocytic normochromic anaemia. The serum malondialdehyde (MDA) levels increased with the advancement of chronic kidney disease. This favoured the fact that there was an increased oxidative stress in these patients.7,8 The levels of the antioxidant enzymes - superoxide dismutase (SOD) and ceruloplasmin decreased with the progress of chronic kidney disease. This may be due to increased consumption of antioxidant enzyme systems as a result of the increased oxidative stress. Therefore, the present study was carried out to evaluate the correlation haemoglobin with serum markers of antioxidants and lipid peroxidation for early diagnosis of patients at different stages of chronic kidney disease.

METHODS

The present study was conducted among chronic kidney disease patients who attended the Nephrology outpatient department and those admitted in the Nephrology wards of a tertiary care hospital at Calicut. The study was conducted after obtaining the institutional ethical clearance and informed consent from all the participants.

The study group consisted of 50 patients with chronic kidney disease who were on conservative treatment with the age group of 20 to 60 years. Based on the creatinine clearance values the patients were assigned to in 3 groups; Stage 3 (Creatinine clearance=30-59 mL/min), Stage- 4 (Creatinine clearance=15-29 mL/min) and Stage- 5 (Creatinine clearance≤15 mL/min) as per the National Kidney Foundation Diseases Outcome Quality Initiative (NKF DOQI) guidelines. The creatinine clearance values were calculated from the serum creatinine levels using the Cockcroft and Gault equation.9,10 Patients with history of smoking, diabetes, acute infections and malignancy were excluded from the study. Control group consisted of 50 age and sex matched, non-diabetic, non-smoker healthy volunteers.

About 5 ml of blood was collected by venous puncture using disposable syringes and needles under aseptic precautions and transferred into clean dry bottles. 4mL blood was allowed to clot and the serum separated by centrifugation at 3,000 rpm for 15 minutes. Superoxide dismutase, Ceruloplasmin and Malondialdehyde levels were assayed in serum using UV–Vis Spectrophotometer (Systronics-118), photoelectric colorimeter (Systronics-114) and Semiautomatic analyzer (Erba). Haemoglobin was estimated using cyanmethaemoglobin method of Drabkin.11

Statistical analysis

The data obtained was represented as mean and the standard deviation. Correlations between the different groups are performed by applying Pearson’s correlation test. The p value of ≤0.05 was taken as the level of significance.

RESULTS

A highly significant positive correlation (r=0.46, p=0.001) was found between creatinine clearance and Hb
concentration in patients with different stages of chronic kidney disease (Table 1). A negative correlation ($r=-0.4$, $p=0.007$) was obtained between serum malondialdehyde levels and haemoglobin concentration in patients with chronic kidney disease (Table 2) and it was found to be highly significant.

Table 1: Correlation between creatinine clearance and haemoglobin concentration in normal and patients with different stages of chronic kidney disorders. Values are mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>Creatinine clearance (mL/min)</th>
<th>Hb (g/dL)</th>
<th>r- value</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>93.80±19.71</td>
<td>13.79±1.90</td>
<td>r= 0.46</td>
<td>p=0.001</td>
</tr>
<tr>
<td>Stage 3</td>
<td>41.08±7.12</td>
<td>9.42±2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>19.31±3.40</td>
<td>9.25±1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>8.72±3.09</td>
<td>7.09±1.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Correlation between malondialdehyde and haemoglobin concentration in normal and patients with different stages of chronic kidney disorders. Values are mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>MDA (nmol/dL)</th>
<th>Hb (g/dL)</th>
<th>r- value</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>81.07±12.34</td>
<td>13.79±1.90</td>
<td>r= -0.4</td>
<td>p=0.007</td>
</tr>
<tr>
<td>Stage 3</td>
<td>82.61±6.71</td>
<td>9.42±2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>91.94±27.50</td>
<td>9.25±1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>118.21±33.80</td>
<td>7.09±1.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Correlation between superoxide dismutase and haemoglobin concentration in normal and patients with different stages of chronic kidney disorders. Values are mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>SOD U/mL</th>
<th>Hb (g/dL)</th>
<th>r- value</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>3.39±1.63</td>
<td>13.79±1.90</td>
<td>r= 0.4</td>
<td>p=0.009</td>
</tr>
<tr>
<td>Stage 3</td>
<td>2.67±1.95</td>
<td>9.42±2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>2.60±1.37</td>
<td>9.25±1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>1.64±1.32</td>
<td>7.09±1.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Correlation between superoxide dismutase and haemoglobin concentration in normal and patients with different stages of chronic kidney disorders. Values are mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>Ceruloplasmin mg%</th>
<th>Hb (g/dL)</th>
<th>r- value</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>31.50±7.66</td>
<td>13.79±1.90</td>
<td>r= 0.3</td>
<td>p=0.07 (NS)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>29.12±5.63</td>
<td>9.42±2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>28.85±10.24</td>
<td>9.25±1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>22.45±6.79</td>
<td>7.09±1.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The serum levels of superoxide dismutase (SOD) were found to be lower in patients in all the 3 stages of chronic kidney disease. A highly significant positive correlation ($r=0.4$, $p=0.009$) was found between SOD level and Hb concentration (Table 3). The serum ceruloplasmin levels progressively decreased from stage 3 to stage 5 suggesting a lowering of antioxidant activity with the progression of chronic kidney disease. A positive correlation was also found between serum ceruloplasmin and haemoglobin values ($r=0.3$, $p=0.07$) but it was not
found to be significant (Table 4). A negative correlation was found between creatinine clearance and MDA levels (r=−0.4, p=0.01) and it was found to be significant (Table 5). A highly significant positive correlation (r=0.4, p=0.008) was found between creatinine clearance and SOD level (Table 6). A significant positive correlation was found between creatinine clearance and ceruloplasmin values in patients with different stages of chronic kidney disease. (r=0.3, p=0.04) and it was found to be significant (Table 7).

Table 6: Correlation between creatinine clearance and superoxide dismutase concentration in normal and patients with different stages of chronic kidney disorders. Values are mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>Creatinine clearance (mL/ min)</th>
<th>SOD U/mL</th>
<th>r- value</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>93.80±19.71</td>
<td>3.39±1.63</td>
<td>r= 0.4</td>
<td>p=0.008</td>
</tr>
<tr>
<td>Stage3</td>
<td>41.08±7.12</td>
<td>2.67±1.95</td>
<td>r= 0.4</td>
<td>p=0.008</td>
</tr>
<tr>
<td>Stage4</td>
<td>19.31±3.40</td>
<td>2.60±1.37</td>
<td>r= 0.4</td>
<td>p=0.008</td>
</tr>
<tr>
<td>Stage 5</td>
<td>8.72±3.09</td>
<td>1.64±1.32</td>
<td>r= 0.4</td>
<td>p=0.008</td>
</tr>
</tbody>
</table>

Table 7: Correlation between creatinine clearance ceruloplasmin level in normal and patients with different stages of chronic kidney disorders. Values are mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>Creatinine clearance (mL/ min)</th>
<th>Ceruloplasmin mg%</th>
<th>r- value</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>93.80±19.71</td>
<td>31.50±7.66</td>
<td>r= -0.4</td>
<td>p=0.01</td>
</tr>
<tr>
<td>Stage3</td>
<td>41.08±7.12</td>
<td>29.12±5.63</td>
<td>r= -0.4</td>
<td>p=0.01</td>
</tr>
<tr>
<td>Stage4</td>
<td>19.31±3.40</td>
<td>28.85±10.24</td>
<td>r= -0.4</td>
<td>p=0.01</td>
</tr>
<tr>
<td>Stage 5</td>
<td>8.72±3.09</td>
<td>22.45±6.79</td>
<td>r= -0.4</td>
<td>p=0.01</td>
</tr>
</tbody>
</table>

DISCUSSION

In the present study, the evaluation of the oxidant and antioxidant status in plasma of patients with renal anaemia indicated the existence of increased free radical activity and decrease in function of antioxidant enzyme systems. A highly significant negative correlation was found between creatinine clearance and serum malondialdehyde levels. Martin et al and Nitin et al have obtained similar results in their studies on chronic kidney disease patients. The increase in malondialdehyde levels with fall in creatinine clearance indicates that lipid peroxidation and oxidative damage increases with progression of chronic kidney disease.

A negative correlation was obtained between serum malondialdehyde levels and haemoglobin concentration in patients with chronic kidney disease and it was found to be highly significant. Siems et al and Sommerberg et al have also got similar findings. In uraemia, peroxidation of polyunsaturated fatty acids on the RBC membrane causes increased permeability to sodium ions, rapid influx of calcium ions and entry of water by osmosis into the cell leading to cell damage. Increased RBC destruction as a result of lipid peroxidation leads to decreased haemoglobin levels in chronic kidney disease patients.

The serum levels of superoxide dismutase (SOD) were found to be lower in patients in all the 3 stages of chronic kidney disease. Nitin et al and Sasikala et al have reported similar reduction in SOD levels in CKD patients. In the present study the fall in SOD level was highly significant only in stage 5, where as in the study by Nitin et al, the reduction in SOD level was found to be highly significant in patients in all the 3 stages of CKD.

Superoxide dismutase functions as an antioxidant by scavenging superoxide anion which is formed from molecular oxygen by single electron transfer. SOD converts the highly reactive superoxide radical into less toxic hydrogen peroxide and decreases cell damage. The lower serum SOD levels point towards the deficient antioxidant mechanisms in chronic kidney disease. The catalytic activity of SOD depends on a prosthetic group containing copper. Zinc stabilizes the apoenzyme in the native configuration. Decreased levels of copper and zinc have been reported in CKD patients who may contribute to deficient activity of SOD enzyme.

A highly significant positive correlation was found between creatinine clearance values and superoxide dismutase enzyme levels. Similar results were obtained by Nitin et al and Sasikala et al. The antioxidant enzyme deficiency increased with the progression of chronic kidney disease subjecting the end stage renal disease patient to severe oxidative stress and its consequences. The decrease in antioxidant defence was more marked in the final stage of CKD as in the initial stages the transcriptional upregulation of antioxidant
enzyme levels in response to increased ROS activity keep
the SOD levels from falling greatly.19

A highly significant positive correlation was found
between serum superoxide dismutase levels and
hemoglobin concentration. In CKD, the defective
antioxidant environment exposed the RBCs to severe
oxidative damage by superoxide radical, decreasing their
life span. A significant negative correlation was found
between serum malondialdehyde and superoxide
dismutase enzyme levels. The increased oxidative
damage caused excess consumption of antioxidants
which led to the imbalance between oxidants and
antioxidants.

The serum ceruloplasmin levels progressively decreased
from stage 3 to stage 5 suggesting a lowering of
antioxidant activity with the progression of chronic
kidney disease. Studies by Bhagwat et al also showed
similar results.20 In the present study, the fall in serum
ceruloplasmin level was significant only in patients with
stage 5 chronic kidney disease.

A positive correlation was found between creatinine
clearance and serum ceruloplasmin levels and it was
found to be significant. The result obtained in the present
study was consistent with the finding of Vikram
Kolagali.21 A positive correlation was also found between
serum ceruloplasmin and haemoglobin values but it was
not found to be significant. Decreased levels of
ceruloplasmin in CRF led to increased availability of
copper and iron which can generate free radicals to cause
further damage of bio molecules in these patients.

CONCLUSION

The study provides a better understanding of the
biochemical parameters underlying anaemia in chronic
kidney disease. The increased production of ROS and
deficiency of antioxidant enzymes altered the oxidant and
antioxidant equilibrium in the plasma of CKD patients.
The deficiency of antioxidant enzymes - superoxide
dismutase and ceruloplasmin resulted in increased
susceptibility of RBC membrane to oxidative damage
induced by ROS mediated lipid peroxidation.

The accelerated peroxidation reactions probably resulted
in shortening of erythrocyte survival and contributed to
the development of anaemia in chronic kidney disease. It
is therefore suggested that antioxidant supplementation
may help the chronic kidney disease patients to cope with
the oxidative stress and prevent destruction of RBC.

The study paves the way for further research work which
is needed to design effective antioxidant treatment
protocols for the management of oxidative stress and
anaemia and to delay the progression of chronic kidney
disease. Large scale clinical intervention studies are
required to realize this goal and this will help to reduce
the burden of end stage renal disease in the general
population.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the
Institutional Ethics Committee

REFERENCES

1. Black SD. Renal Disease. 3rd edition Blackwell
Scientific Publications. 463;739-58.
2. Remuzzi G, Schieppati A, Minetti L. Haematological
consequences of renal failure. Brenner and Rector’s The Kidney, volume 2, 7th
3. Winears CG. Chronic renal failure, Oxford text
University Press. 3294-330.
4.eschbach JW, Adomson JW. Anaemia of endstage
renal disease (ESRD). Editorial review, Kidney
Inter. 1985;28:5.
5. Zalba G, Fortuno A, Diez J. Oxidative stress and
atherosclerosis in early chronic kidney disease.
Nephrology Dialysis and Transplantation.
Mechanisms and Potential consequences. Seminars
in nephrology. 2004;469-73.
8. Salahudeen AK. Free radicals in kidney disease and
Transplantation, Saudi Journal of Kidney Disease
9. KDQI Clinical Practice Guidelines for Chronic
Kidney Disease: Evaluation classification and
stratification (2002) part 4: Definition and
classification of stages of chronic kidney disease.
10. Perazella MA, Reilly RF. Chronic Kidney Disease: A
new classification and staging system. Clinical
review article, Hospital Physician. 2003;2:18-22.
11. Balasubrahmanian P, Malathi A. Comparative study
of haemoglobin estimated by Drabkin’s and Sahli’s
12. Martin Mateo M.C, Sanchez-Portugal M, Iglesias S,
de Paula A, Bustamante J. Oxidative stress in renal
13. Nagane NS, Ganu JV, Gandhi R. Oxidative stress,
serum homocysteine and serum nitric oxide in
different stages of chronic renal failure. Biomedical
14. Carluccio SW, Radenkovic S, Grune T, Hampl H.
Oxidative stress in renal anaemia of haemodialysis
patients is mitigated by epeotin treatment. Kidney
15. Sommerburg O, Grune T, Hampl Erlich JH, Siems
WG. Long term treatment of renal anaemia with
recombinant erythropoetin influence oxidative stress in haemodialysed patients. Nephrology

