DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20172999

Original Research Article

Prevalence of constitutive and inducible clindamycin resistance among clinical isolates of *Staphylococcus aureus* in a tertiary care institute in North India

Jeevan Shetty^{1*}, Zarrin Afroz²

Department of Microbiology, G.S. Medical College and Hospital (Chaudhary Charan Singh University), Pilkhuwa, Uttar Pradesh, India

Received: 29 April 2017 Revised: 25 May 2017 Accepted: 29 May 2017

*Correspondence: Dr. Shetty Jeevan,

E-mail: drjeesh@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Clindamycin is an important drug used in the treatment of Methicillin Sensitive *Staphylococcus aureus* (MSSA) as well as in Methicillin-resistant *Staphylococcus aureus* (MRSA) infections. This drug is widely used in the treatment of skin and soft tissue infections caused by them. Therapeutic failure caused by macrolide-lincosamine-streptogramin B constitutive and inducible clindamycin resistance (MLS_Bc and MLS_Bi) is being more commonly reported.

Methods: The present study was conducted over a period of six months from October 2016 to March 2017 to know the incidence of MLS_Bc and MLS_Bi in *Staphylococcus aureus* (*S. aureus*) isolates obtained in our hospital by D-test as per CLSI guidelines. A total of 130 isolates of *S.aureus* were obtained from different clinical specimens which included pus/ wound swab (n=266), urine (n=577), sputum (n=225), blood (n=221), throat swab (n=71), ear/eye discharge (n=21), high vaginal swab (n=20) and body fluids (n=50). All the isolates were subjected to antibiotic sensitivity testing by Kirby Bauer's disc diffusion method. Amoxyclav, Erythromycin, Clindamycin, Co-trimoxazole, Tetracycline, Ofloxacin, Gentamicin, Linezolid and Vancomycin were the antibiotics used.

Results: Out of 130 (8.9%) isolates of *S. aureus* obtained from 1451 clinical samples, 82 (63.1%) were found to be MSSA and 48 (36.9%) were MRSA. Among *S. aureus*, 43 (33.1%) isolates showed MLS_{BC} resistance, 22 (16.9%) isolates showed MLS_Bi resistance and 20 (15.4%) isolates showed MS phenotype. The remaining 45 (34.6%) isolates remained sensitive to Erythromycin. Among MSSA, MLS_{BC} were observed in 18 (22%) isolates and MLS_Bi in 9 (11%) while in MRSA, MLS_{BC} were observed in 25 (52.1%) isolates and MLS_Bi in 13 (27.1%) isolates. Almost all clinical isolates showed 100% sensitivity to Vancomycin and Linezolid in routine antibiotic susceptibility testing. Both MLS_{BC} and MLS_Bi resistance was significantly higher (p<0.05) in MRSA than in MSSA.

Conclusions: The study emphasizes the importance of conducting D test along with routine antibiotic susceptibility testing for better utilization of clindamycin in *S. aureus* infections.

Keywords: Clindamycin, Constitutive, Inducible, MRSA, MSSA, Phenotype

INTRODUCTION

Staphylococci is a member of the Micrococcaceae family commonly found on human skins and anterior nares and are capable of causing severe infections in humans. It is known to cause skin, soft tissue, respiratory and urinary tract infections. *S. aureus* remains one of the versatile and dangerous pathogen in humans and both community and hospital acquired staphylococcal infections have increased steadily. Genes governing resistance to

antibiotics and producing virulence factors are present on both chromosome and extrachromosomal elements.¹ Resistant to MRSA is due to an additional penicillinresistant peptidoglycan transpeptidase, PBP-2a encoded by mec A gene.² MRSA isolates possessing the gene encoding Panton-Valentine leucocidin are capable of causing severe infections and their numbers is increasing.³

Due to the increasing frequency of methicillin resistant infections and changing patterns in antimicrobial resistance there is renewed interest in use of macrolide lincosamide -streptogramin (MLS_B) family of antibiotics such as erythromycin, clindamycin and dalfopristin/quinupristin.⁴ Clindamycin is the most preferred agent because of its good oral absorption, excellent tissue penetration and no need of renal dose adjustment. It suppresses production of Panton -Valentine leucocidin and other virulence factors in MRSA.³

Macrolide antibiotic resistance in S. aureus and CONS occur due to active efflux mechanism coded by msr A gene or due to erm genes. The gene msrA confers resistance to macrolide and streptogramins type B only while erm genes encode enzymes which are capable of conferring inducible (MLS_Bi) or constitutive (MLS_Bc) resistance to all the three group of drugs via methylation of the 23S rRNA.5 The enzyme encoded by erm gene called as 23S rRNA methylase renders affected ribosomes incapable of binding the MLS antibiotics and low levels of erythromycin act as the most effective inducer. Staphylococcal phenotypes observed in one study found an apparent inverse correlation between the resistance observed and the use of erythromycin in each hospital. Greatest erythromycin use vielded the lowest incidence of MLS_B c and vice-versa.⁶

Clindamycin was developed in 1966 by chemically modifying the naturally occurring lincomycin. It acts by inhibiting bacterial protein synthesis at the level of the 50S ribosome. It is capable of decreasing toxin production and increase microbial opsonization and phagocytosis at subinhibitory concentrations. It is well absorbed from gastrointestinal tract and achieves good concentration inside neutrophils, bones and joints. It is used in treatment of skin and soft tissue infections, abscesses, decubitus ulcers, osteomyelitis, head and neck, pleuropulmonary, abdominal and pelvic infections besides being an alternative in penicillin allergic patients.⁷

Strains with constitutive and inducible resistance to clindamycin have to be identified in the laboratory to avoid unnecessary use of clindamycin which may appear sensitive in vitro by the disk diffusion method. There are no studies about the prevalence of constitutive and inducible clindamycin resistance in this region. In this background, we conducted the study to estimate the prevalence of clindamycin resistance.

METHODS

The present observational study was conducted over a period of six months from October 2016 to March 2017. A total of 1451 clinical specimens such as pus/wound swab (n=266), urine (n=577), sputum (n=225), blood (n=221), throat swab (n=71), ear/eye discharge (n=21), high vaginal swab (n=20) and body fluids (n=50) were processed and S. aureus was isolated in 130 samples. Isolates were identified as S. aureus and methicillin resistant by standard conventional methods.⁸

Antibiotic sensitivity testing was done by Kirby Bauer's disc diffusion method on Mueller- Hinton agar plates using Amoxyclav (20/10 μ g), Erythromycin (15 μ g), Clindamycin (2 μ g), Co-trimoxazole (1.25/23.75 μ g), Tetracycline (30 μ g), Ofloxacin (5 μ g), Gentamicin (10 μ g), Linezolid (30 μ g) and Vancomycin (30 μ g) (Himedia Lab, Mumbai). *S. aureus* ATCC 25923 was used for the purpose of quality control.

Phenotypic detection of inducible resistance to Clindamycin by D-test.

Clindamycin and Erythromycin disks were placed on Mueller Hinton agar plate separated by a distance of 15 mm between the edges. Plates were incubated at 37° C for 24 hours. Inducible resistance to Clindamycin was defined as blunting of the clear circular area of no growth around the Clindamycin disc on the side adjacent to the Erythromycin disk and was designated as D test positive. Absence of a blunted zone of inhibition was designated D-test negative.⁸

Three different phenotypes were interpreted as follows

- Constitutive MLS_Bc phenotype: Those isolates which showed resistance to both Erythromycin (zone size <13 mm) and Clindamycin (zone size <14 mm) with circular shape of zone of inhibition if any around Clindamycin.
- Inducible MLS_B phenotype: Those isolates showing resistance to Erythromycin (zone size <13 mm) and sensitive to Clindamycin (zone size >21 mm) giving D- shaped zone of inhibition around Clindamycin disc were labelled as MLS_Bi phenotype.
- MS phenotype: Those isolates showing circular zone of inhibition around clindamycin (zone size >21 mm) and resistance to Erythromycin (zone size <13 mm) was labelled as MS phenotype.

Stastical analysis

Data were entered and analyzed using SPSS (Statistical Package for Social Science) program version 24 and statistical significance was considered when p value was less than 0.05.

RESULTS

A total of 130 (8.9%) *S. aureus* were isolated from 1451 clinical specimens which included pus/wound swab (n=266), urine (n =577), sputum (n =225), blood (n

=221), throat swab (n =71), ear/eye discharge (n =21), high vaginal swab (n=20) and body fluids (n=50). Out of this 130 S. aureus strains isolated, 82 (63.1%) were MSSA and 48 (36.9%) were MRSA (Table 1).

Table 1: Phenotypic pattern of clindamycin resistance observed in MSSA and MRSA.

Isolates (n)	MLS _B c Phenotype	MLS _B i Phenotype	MS Phenotype	Both Erythromycin and
	n (%)	n (%)	n (%)	Clindamycin sensitive n (%)
S. aureus (n=130)	43 (33.1%)	22 (16.9%)	20 (15.4%)	45 (34.6%)
MSSA (n= 82)	18 (22%)	09 (11%)	12 (14.6%)	43 (52.4%)
MRSA (n= 48)	25 (52.1%)	13 (27.1%)	08 (16.7%)	02 (4.1%)

Table 2: Studies done in different places in India showing prevalence of constitutive and inducible clindamycin resistance.

Author's name	MSSA			MRSA		
(Place of study in India)	MLS _{BC} (%)	MLS _B i (%)	MS Pheno type (%)	MLS _B C (%)	MLS _B i (%)	MS Pheno type (%)
Mokta et al (Shimla)	13.4	9.3	6.7	29.2	28.1	13.4
Das et al (Dibrugarh)	16	8.9	21.4	36.3	31.8	13.6
Mittal et al (Lucknow)	4.5	8.4	16.1	8.6	44.8	13.3
Appalaraju et al (Coimbatore)	2.3	3.4	15.8	33.7	42.1	18.9
Nikam et al (Amaravati)	15	3	14	42.8	29.8	16.8
Supriyarajvi et al (Bikaner)	5	15.8	15.32	17.3	30.6	20
Present study (Pilkhuwa)	22	11	14.6	52.1	27.1	16.7

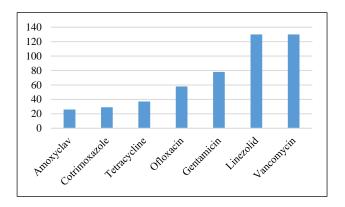


Figure 1: Antibiotic sensitivity pattern of Staphylococcus aureus (n=130) isolated from clinical specimens.

S. aureus was predominantly isolated from pus/wound sample (n =58) followed by sputum (n =19), urine (n =19), throat swab (n=11), high vaginal swab (n=9), eye/ear discharge (n=6), blood (n =5) and body fluids (n=3).

All *S. aureus* obtained from our study were found to be sensitive to vancomycin (100%) and linezolid (100%) followed by gentamicin (60%), ofloxacin (44.6%), tetracycline (28.5%), co-trimoxazole (22.3%) and amoxyclav (20%) (Figure 1).

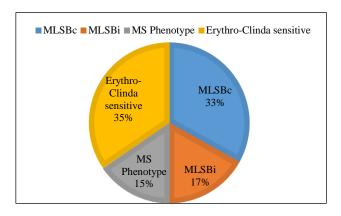


Figure 2: MLS_B resistance phenotype of *Staphlococcus aureus*.

In the present study, among S. aureus a total of 43 (33.1%) isolates were found to be positive for MLS_Bc phenotype, 22 (16.9%) MLS_Bi and 20 (15.4%) were of MS phenotype (Figure 2). We found MLS_Bc phenotype in 18 (22%) of MSSA and 25 (52.1%) of MRSA. MLS_Bi phenotype in 9 (11%) of MSSA and 13 (27.1%) of MRSA (Figure 3 and 4). The prevalence of MS phenotype was found in 12 (14.6%) of MSSA and 8 (16.7%) of MRSA (Table 1). Overall 45 (34.6%) isolates of S. aureus showed susceptibility to Erythromycin.

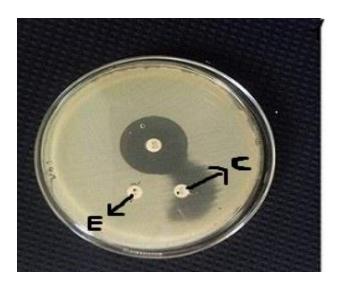


Figure 3: D test demonstrating a blunting of zone of inhibition around the clindamycin disc at 15mm distance from erythromycin disc that forms a D-shape (Inducible MLSB phenotype) with cefoxitin disc above (MSSA).

Figure 4: D test demonstrating resistance to both clindamycin and erythromycin (constitutive MLSB phenotype).

Both constitutive MLS_{BC} and inducible MLS_{Bi} Clindamycin resistance was significantly higher (p<0.05) in MRSA than in MSSA in our study. MS phenotype in MRSA and MSSA was not statistically significant (Table 2).

DISCUSSION

Clindamycin is frequently used in treatment of skin and soft tissue infections because of its proven efficacy, safety and convenience of parenteral and oral administration in patients. But therapeutic failure caused by MLS_Bi strains is of great concern because these isolates appear as sensitive in routine antibiotic susceptibility testing. Hence there is a need to do D zone

testing which helps in identifying the cryptic resistant isolates.

Out of 130 isolates of S. aureus, we found that 17% were MLS_Bi strains and 33% were MLS_Bc strains. Several studies have reported high levels of MLSBc and MLSBi strains of S. aureus. Das et al found 21.8% isolates showed constitutive and 15.4% isolates showed inducible clindamycin resistance.9 Mokta et al found 13.7% MLS_Bi and 17.1% MLS_Bc strains while in another study by Mittal et al reported 23.2% MLS_Bi strains and MLS_Bc strains constituted only 6.1% among S. aureus isolates. In contrast to many other studies they found MLS_{BC} in MRSA very much lower. 10,11 Study done in Tehran has found 7.5% MLS_Bi strains and 38.9% of MLS_Bc strains of S. aureus but was lower than in coagulase negative staphylococci which showed 10.1% and 59.2% respectively.¹² Ghosh et al reported 23.9% of the tested isolates in their hospital were MRSA and 41.3% of S. aureus isolated belonged to MLS_Bi strains.¹³

In our study we found statistically significant MLS_Bc and MLS_Bi strains in MRSA than in MSSA. Similar observations have been made by Appalaraju et al and Nikam et al. MLS_Bc was detected in 33.7% and 42.8% while MLS_Bi in 42.1% and 29.8% isolates of MRSA respectively in their studies. 14,15 Several studies done across the country have reported that constitutive and inducible MLS_B strains are seen more in MRSA than in MSSA strains. 16-21 Since MLS_Bi strains cannot be detected by automated susceptibility testing or E-test, performing a simple, inexpensive, easy to perform and reproducible test such as D-test can be included as a part of routine antibiotic susceptibility testing. 22

Pus/wound sample accounted for the majority (n=58) from which S. aureus has been isolated and a high number of them showed MLS_Bc (n=17) and MLS_Bi (n=15) clindamycin resistance. MS phenotype in our study was found to be 15.4% among S. aureus isolates. MS Phenotype was observed in 16.7% of MRSA and 14.6% in MSSA. All the isolates in our study showed susceptibility to vancomycin and linezolid which has also been reported in several other studies. In similarity to our study, resistance to other antibiotics has ranged from 18.8% to 80.1% and all isolates of S. aureus have been found sensitive to vancomycin and linezolid.^{4,13} Sensitivity of S. aureus including MRSA showed 90.2% sensitive to tetracycline and 48.4% to co-trimoxazole which in contrast our study showed only 28.5% and 22.3% respectively.²¹

Several reports of reduced susceptibility to glycopeptides have been reported. Emergence of vancomycinintermediate *S. aureus* and more recently vancomycinresistant *S. aureus* is an additional concern.²³⁻²⁵ Debnath et al has reported 7.22% MRSA strains resistance to linezolid.²⁶ Suggestions to use clindamycin, vancomycin and linezolid for MRSA as reserve drugs need to be emphasized in hospitals.²⁷

CONCLUSION

Though Clindamycin is an excellent drug in treatment of several infections, it still remains the priority drug in treatment of skin and soft tissue infections. The high prevalence of MLS_Bc and MLS_Bi strains among clinical specimens in particularly pus/wound swab is a thing of concern. Studies done earlier have shown that for staphylococci, MLS_Bi phenotypes determined by disc diffusion methods correlated well with genotypes determined by hybridization techniques. Methicillin resistance in *S. aureus* is also in the rise in different regions across our country. In this background D-test done routinely with antibiotic susceptibility testing will help in guiding physicians properly and prevents therapeutic failure.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- Lowy FD. Staphylococcus aureus Infections. N Engl J Med. 1998;339:520-32.
- Livermore DM. Antibiotic Resistance in Staphylococci. Int J Antimicrob Agents. 2000;16(1):3-10.
- 3. Robert C, Moellering Jr. Current treatment options for Community Acquired Methicillin Resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46(7):1032-7.
- 4. Lyall KD, Gupta V, Chhina D. Inducible clindamycin resistance among clinical isolates of Staphylococcus aureus. J Mahatma Gandhi Inst Med Sci. 2013;18(2):112-5.
- Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk Diffusion method for detection of Inducible clindamycin resistance in Staphylococcus aureus and Coagulase-Negative Staphylococci. J Clin Microbiol. 2003;41(10):4740-4.
- Jenssen WD, Thakker-Varia S, Dubin DT, Weinstein MP. Prevalence of Macrolides-Lincosamides-Streptogramin B resistance and erm gene classes among clinical strains of Staphylococci and Streptococci. Antimicrob Agents Chemother. 1987;31(6):883-8.
- 7. Smieja M. Current indications for the use of clindamycin: A critical review. Can J Infect Dis. 1998;9(1):22-8.
- 8. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24, Wayne, PA: Clinical and Laboratory Standards Institute. 2014.
- 9. Das PP, Choudhury G, Saikia L. Inducible Clindamycin Resistance in clinical isolates of

- Staphylococcus aureus. Int J Med Res Prof. 2016;2(1):65-9.
- Mokta KK, Verma S, Chauhan D, Ganju SA, Singh D, Kanga A, et al. Inducible clindamycin resistance among clinical isolates of Staphylococcus aureus from Sub Himalayan region of India. J Clin Diag Res. 2015;9(8):20-3.
- 11. Mittal V, Kishore S, Siddique ME. Prevalence of inducible clindamycin resistance among clinical isolates of Staphylococcus aureus detected by phenotypic method: A preliminary report. J Infect Dis Immun. 2013;5(1):10-2.
- 12. Saffar H, Rajabiani A, Abdollahi A, Habibi S, Baseri Z. Frequency of inducible clindamycin resistance among gram-positive cocci in a tertiary hospital, Tehran, Iran. Iran J Microbiol. 2016;8(4):243-8.
- 13. Ghosh S, Banerjee M. Methicillin resistance and inducible clindamycin resistance in Staphylococcus aureus. Indian J Med Res. 2016;143:362-4.
- 14. Appalaraju B, Jayakumar S. Inducible Clindamycin Resistance in Staphylococcus aureus isolated from clinical samples. J Commun Dis. 2010;42(4):263-8.
- 15. Nikam AP, Bhise PR, Deshmukh MM. Phenotypic detection of inducible clindamycin resistance among Staphylococcus aureus isolates. Int J Res Med Sci. 2017;5(2):543-7.
- 16. Khan F, Ali S, Sultan A, Rizvi M, Shukla I. Clindamycin Resistance constitutive and inducible patterns in erythromycin resistant clinical isolates of Staphylococcus species. Int J Microbiol Res. 2014;5(3):185-9.
- 17. Lall M, Sahni AK. Prevalence of inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Med J Armed Forces India. 2014;70:43-7.
- Vivek JS, Rajesh GN, Mukesh S, Manpreet K, Manpreet K, Misra RN, et al. Prevalence of inducible clindamycin resistance among community- and hospital-associated Staphylococcus aureus isolates in a tertiary care hospital in India. Biomed Res. 2011;22:465–9.
- 19. Angel MR, Balaji V, Prakash JAJ, Brahmadathan KN, Mathews MS. Prevalence of inducible clindamycin resistance in Gram positive organisms in a tertiary care centre. Ind J Med Microbiol. 2008;26(3):262-4.
- 20. Ahmad FB, Ahmad PM, Danish Z, Ahmad TM, Ahmad NR. Phenotypic detection of constitutive and inducible clindamycin resistance in clinical isolates of Staphylococcus aureus and coagulase negative staphylococcus on routine susceptibility plate. J Commun Dis. 2010;42(1):19-26.
- 21. Supriyarajvi, Gupta A, Tina G, Sharma BP. Detection of inducible Clindamycin Resistance among Staphylococcal isolates from various clinical specimens in a tertiary care institute in North west region of Rajasthan, India. Int J Curr Microbiol App Sci. 2015;4(10):741-9.

- 22. Satish JV, Janakiram K, Vijaya D. Inducible Clindamycin Resistance in Staphylococcus aureus: Reason for treatment failure. J Int Med Dentistry. 2015;2(2):97-103.
- 23. Bhooshan S, Prasad J, Dutta A, Vandana KE, Mukhopadhyay C. Reduced susceptibility of MRSA to Vancomycin. Int J Pharm Pharm Sci. 2016;8(9):321-2.
- Roy PC, Shaheduzzaman M, Sultana N, Jahid IK. Comparative antibiotic sensitivity pattern of Hospital and Community acquired Staphylococcus aureus isolates of Jessore, Bangladesh. J Biosciences Med. 2015;3:17-23.
- 25. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus

- (MRSA). J Antimicrob Chemotherapy. 2015;56:1000-18.
- Debnath A, Chikkaswamy BK. Antibiogram and susceptibility pattern of Methicillin-Resistant Staphylococcus aureus collected from various clinical samples in Bengaluru. Asian J Pharm Clin Res. 2015;8(6):260-4.
- 27. Mandelia C, Shenoy S. Community associated Methicillin-Resistant Staphylococcus aureus in skin and soft tissue infections. J Clin Diag Res. 2010;4:2673-7.

Cite this article as: Shetty J, Afroz Z. Prevalence of constitutive and inducible clindamycin resistance among clinical isolates of Staphylococcus aureus in a tertiary care institute in North India. Int J Res Med Sci 2017;5:3120-5.