Case Report

Mixed phenotype acute leukaemia: a case report of an unusual presentation

Veeraraghavan Gurusamy*, Ramya Panneerselvam, Bharathi Vidhya Jayanthi

Department of Pathology, Madras Medical College, Chennai, Tamil Nadu, India

Received: 01 May 2017
Accepted: 29 May 2017

*Correspondence:
Dr. Veeraraghavan Gurusamy,
E-mail: gvrvishwa@gmail.com

ABSTRACT

Mixed phenotype acute leukaemias (MPALs), a varied group of disorders pose a diagnostic challenge to the physicians and pathologists alike. This rare subset of acute leukaemias are characterised by the presence of blasts which express markers of more than one lineage (B-lymphoid / T-lymphoid / Myeloid lineage), making the essentiality of immunophenotyping more pertinent. MPALs are included in the acute leukaemias of ambiguous lineage under the World health organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. We describe here a case report of mixed phenotype acute leukaemia (T-Lymphoid/Myeloid).

Keywords: Acute leukaemia’s of ambiguous lineage, Flow cytometry, Mixed phenotype acute leukaemia, T-Lymphoid/Myeloid

INTRODUCTION

Acute leukaemias which are clonal proliferation of hematopoietic stem cells, are characterised by the presence of blasts of a specific lineage (lymphoid/myeloid). However, a small subset of acute leukaemias exist which exhibit more than one lineage and are termed as mixed phenotype acute leukaemia (MPAL). It is a rare entity so designated because of their features characteristic of multiple lineages and has been known previously by a multitude of names viz. mixed lineage leukaemia, acute hybrid leukaemia, bilineal leukaemia, and biphenotypic leukemias. The 2008 World health organization classification and European group for the immunological characterization of leukaemias (EGIL) have laid down certain criteria which must be met in order to diagnose a case as mixed phenotype acute leukaemia, thus helping in distinguishing them from acute lymphoblastic leukaemia or acute myeloid leukaemia with aberrant antigen expression. An acute clinical awareness can prevent an erroneous diagnosis especially when MPAL manifests with generalized lymphadenopathy, as seen in the case we describe here.

CASE REPORT

41-year-old female presented with complaints of bilateral neck swelling, fever which was on and off and bleeding gums for 6 months. Physical examination revealed generalized lymphadenopathy which included bilateral cervical, axillary and inguinal group of lymph nodes. Abdominal examination revealed no organomegaly. Her blood parameters were WBC-117,000/µL; RBC-2,850,000/µL; Hemoglobin-8.4 g/dL; Platelets-23,000/µL.

Peripheral smear revealed microcytic hypochromic RBCs with occasional nucleated RBCs. WBCs were markedly increased in count with preponderance of blasts having scant cytoplasm and 1-3 nucleoli which constituted 85% of WBCs. Platelets were reduced in number (Figure 1).
Subsequently bone marrow aspiration and excision biopsy of cervical node was done. Bone marrow aspirate showed a cellular marrow with reduction in erythroid series and megakaryocytes and an increase in the presence of blasts with scant cytoplasm and 1-3 nucleoli with few blasts exhibiting coarse cytoplasmic granules (Figures 2 and 3).

Histopathological examination of cervical lymph node showed effacement of lymph node architecture and diffuse proliferation of atypical cells exhibiting prominent nucleoli. Immunohistochemistry showed diffuse strong positivity for CD3 and negativity for CD20 (Figure 4A and 4B).

Flow cytometric immunophenotyping analysis was done which showed positivity for CD3, CD7, CD10, MPO and CD33 in the blasts (Figure 5). Conventional karyotyping and fluorescent in situ hybridization (FISH) analysis to identify t (9;22) (q34; q11) using dual colour dual fusion BCR-ABL1 probe was performed on the bone marrow sample and she was found to have normal karyotype. The final diagnosis of mixed phenotype acute leukemia, T-lymphoid/myeloid, NOS was made.
DISCUSSION

Mixed phenotype acute leukaemias (MPALs) represent less than 5% of acute leukaemias. The previously defined separate entities like the biphenotypic acute leukaemia where a single blast cell population shows a mixed phenotype and the bilineal acute leukaemia where two distinct blast cell populations exist each exhibiting a distinct phenotype are now included in the ambit of MPAL. The subtypes include B-Lymphoid/Myeloid, T-Lymphoid/Myeloid, B-Lymphoid/T-Lymphoid and very rarely the possibility of trilineage differentiation (B-Lymphoid/T-Lymphoid/Myeloid).

<table>
<thead>
<tr>
<th>Score</th>
<th>B-lymphoid</th>
<th>T-lymphoid</th>
<th>Myeloid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CD79a</td>
<td>CD3 (Surface or cytoplasmic)</td>
<td>Myeloperoxidase</td>
</tr>
<tr>
<td></td>
<td>Cytoplasmic CD22</td>
<td>TCR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytoplasmic IgM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CD10</td>
<td>CD2</td>
<td>CD13</td>
</tr>
<tr>
<td></td>
<td>CD19</td>
<td>CD5</td>
<td>CD33</td>
</tr>
<tr>
<td></td>
<td>CD20</td>
<td>CD8</td>
<td>CD65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD10</td>
<td>CD117</td>
</tr>
<tr>
<td>0.5</td>
<td>TdT</td>
<td>TdT</td>
<td>CD14</td>
</tr>
<tr>
<td></td>
<td>CD24</td>
<td>CD7</td>
<td>CD15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD1A</td>
<td>CD64</td>
</tr>
</tbody>
</table>

A score of more than 2 for each lineage is required

<table>
<thead>
<tr>
<th>Lineage</th>
<th>Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-lymphoid</td>
<td>Strong CD19 expression and strong expression of at least one of the following markers: CD79a, cCD22, CD10 (or) Weak CD19 expression and strong expression of at least two of the following markers: CD79a, cCD22, CD10</td>
</tr>
<tr>
<td>T-lymphoid</td>
<td>Cytoplasmic CD3 (or) Surface CD3</td>
</tr>
<tr>
<td>Myeloid</td>
<td>Myeloperoxidase (or) Monocytic differentiation with at least two of the following markers: NSE, CD11c, CD14, CD64, lysozyme</td>
</tr>
</tbody>
</table>

It affects both children and adults with a male predominance. MPALs are thought to arise from multipotent progenitor stem cells which can differentiate into lymphoid and myeloid lineages. Several diagnostic criteria have been proposed to distinguish MPAL from acute leukaemia with aberrant expression of differentiation antigens from another lineage.

The two most widely followed and accepted criteria are the 2008 WHO criteria and European Group for the immunological characterization of leukaemia (EGIL) scoring system (Tables 1,2). In this case, the diagnostic criteria of both systems were satisfied with the expression of CD3 and myeloperoxidase (2008 WHO criteria) and a score of 3.5 for T-lymphoid lineage and a score of 3 for myeloid lineage (EGIL scoring system).

Cytogenetic studies have demonstrated many chromosomal abnormalities including t (9;22) (q34; q11), t (v;11q23) (MLL), monosomy 7 and trisomy 8 among others.

The optimal therapy for MPAL has not been well defined and the prognosis remains unfavourable. The treatment options include the combined AML+ALL therapy, CAG regimen (low-dose cytarabine, aclarubicin hydrochloride and granulocyte colony-stimulating factor) and allogenic hematopoietic stem cell transplantation. Patients who have t (9;22) may benefit from the treatment with tyrosine kinase inhibitors.

CONCLUSION

Mixed phenotype acute leukaemia being a very rare disease and when presenting with atypical clinical features like generalized lymphadenopathy, present a diagnostic dilemma. Flow cytometric immunophenotyping analysis and cytogenetic analysis are essential for the diagnosis, formulating treatment protocols and predicting the disease outcome.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required
REFERENCES

International Journal of Research in Medical Sciences | July 2017 | Vol 5 | Issue 7 | Page 3250