Correlation of lipids and lipoprotein concentration with body mass index in obese, overweight and normal weight south Indian adults

Gayathri B.*, Vinodhini V. M.

Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM University, Kattankulathur, Tamil Nadu, India

Received: 11 October 2017
Accepted: 14 October 2017

*Correspondence:
Dr. Gayathri B.,
E-mail: drgayathrikiruba@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Obesity a chronic disorder is gradually becoming a serious public health problem in many countries. The aim of the study was designed to measure serum lipids and lipoproteins as marker for cardiovascular disease among obese and overweight South Indian adults.

Methods: The study was done between June 2016 to December 2016, in SRM medical college hospital and research centre, Kattankulathur which comprised of 270 participants of both gender in the age of 18-55 years. 90 individuals with body mass index (BMI ≥25kg/m²), 90 individuals with BMI in the range of 23.0 to 24.99kg/m² and 90 age and sex matched controls (BMI = 18 to 22.99kg/m²) were selected for the study. Serum levels of total cholesterol, Triacylglycerol, high density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) were analyzed by using auto analyzer Beckman Coulter AU480. The cardiac risk ratio 1 (cholesterol/HDL-C ratio) and 2 (LDL-C/HDL-C) ratio were calculated.

Results: The difference between the mean values of total cholesterol, triglycerides and LDL-C, were found to be statistically significant across the three groups. Positive correlation was observed between BMI and cardiac risk ratios one and two in both obese and overweight groups.

Conclusions: Cardiac risk is increased in South Indian overweight and obese individuals which is evident from the elevated levels of total cholesterol, triglycerides, LDL-C and cardiac rick ratio one (cholesterol/HDL-C ratio) and two (LDL-C/HDL-C).

Keywords: Body mass index, Cardiac risk, Obesity

INTRODUCTION

In recent decades the prevalence of obesity and overweight has increased steadily in both developed and developing countries.1 Alterations in body fat distributions are associated with changes in lipids and lipoproteins.2 Obesity is a risk factor for adult coronary heart disease and is in increasing order among young people and adults.3,4 Various lipid/lipoprotein abnormalities have been observed in obese individuals, including elevated cholesterol, triglycerides, and lower high-density lipoprotein (HDL) cholesterol levels. Of these indicators, changes in triglyceride and HDL cholesterol levels are most consistent and pronounced.5 Serum levels of Leptin have a close correlation with adiposity indices and lipid profile and its level increases significantly with increasing grades of obesity.6

Body mass index is widely used as a marker of adiposity, but it may not be a good measurement of adiposity, mainly in extremes of stature and with advancing age.7
Cardiovascular diseases (CVD), the most leading cause of morbidity and mortality in the western World is now emerging as public health problem in the developing countries. Association between dyslipidemia, obesity and hypertension is well established. The present study was designed to measure serum lipids and lipoproteins as markers for cardiovascular diseases among obese and overweight South Indian adults.

METHODS

The study was performed in accordance with the approval of the Institutional ethics committee (EC no:957/IEC/2016), and informed written consent was taken from all subjects. The study was done between June 2016 to December 2016, which comprised of 270 South Indians in the age of 18 - 55 years. The subjects were selected from those who were attending master health checkup programme at SRM Medical College Hospital and Research centre, Kattankulathur-South India. These subjects were sub-grouped into 90 overweight (BMI =23 to 24.9 kg/m²), and 90 obese (BMI ≥25), beside 90 ages matched (BMI= 18 to 22.9 kg/m²) healthy persons as control group.

Table 1: Mean ± standard deviation of measured parameters of the study groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Healthy (n = 90) mean ± SD</th>
<th>Overweight (n = 90) Mean ± SD</th>
<th>Obese (n = 90) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²)</td>
<td>20.69 ± 1.98</td>
<td>23.79 ± 0.55</td>
<td>29.69 ± 4.55</td>
</tr>
<tr>
<td>FBS (mg/dl)</td>
<td>116.57 ± 42.55</td>
<td>109.48 ± 33.09</td>
<td>125.52 ± 48.24</td>
</tr>
<tr>
<td>T. choles (mg/dl)</td>
<td>153.93 ± 37.90</td>
<td>164.13 ± 31.80</td>
<td>184.44 ± 36.67</td>
</tr>
<tr>
<td>TGL (mg/dl)</td>
<td>97 ± 36.35</td>
<td>145.15 ± 99.48</td>
<td>159.60 ±120.60</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>39.54 ± 11.34</td>
<td>44.51 ± 7.35</td>
<td>40.94 ± 7.76</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>112.62 ± 31.65</td>
<td>149.13 ± 31.97</td>
<td>153.33 ± 38.60</td>
</tr>
</tbody>
</table>

Comparison of Biochemical Parameters between the three groups using One-Way ANOVA are shown in Table 2.

Mean values of T.C, TGL and LDL-C of the Study Groups Obese, Overweight and Healthy (Figure 1) were significantly different among the three groups.

Correlation between BMI and CHO/LDL ratio in Obese subjects (Figure 2).

Correlation between BMI and LDL/HDL ratio in Obese subjects (Figure 3).

The Pearson’s correlation coefficient was determined. A significantly positive correlation was found between BMI and cardiac risk ratios.

Cardiovascular risk ratio 1 and 2 in obese individuals was found to correlate positively with BMI.
Table 2: Comparison of biochemical parameters between the three groups using one-way ANOVA.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sum of squares</th>
<th>DF</th>
<th>Mean square</th>
<th>F-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS</td>
<td>Between groups</td>
<td>11619.6963</td>
<td>2</td>
<td>5809.8481</td>
<td>3.330</td>
</tr>
<tr>
<td></td>
<td>Within groups</td>
<td>465822.9</td>
<td>267</td>
<td>1744.655</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>477442.596</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Choles</td>
<td>Between groups</td>
<td>43425.27</td>
<td>2</td>
<td>21712.637</td>
<td>17.174</td>
</tr>
<tr>
<td></td>
<td>Within groups</td>
<td>337560.22</td>
<td>267</td>
<td>1264.2705</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>380985.496</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-C</td>
<td>Between groups</td>
<td>1180.4667</td>
<td>2</td>
<td>590.2333</td>
<td>7.2867</td>
</tr>
<tr>
<td></td>
<td>Within groups</td>
<td>21627.5333</td>
<td>267</td>
<td>81.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22808</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C</td>
<td>Between groups</td>
<td>90242.8741</td>
<td>2</td>
<td>45121.437</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>Within groups</td>
<td>312859.555</td>
<td>267</td>
<td>1171.7586</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>403210.4296</td>
<td>269</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.05 Considered statistically significant

Figure 1: Mean values of T.C, TGL and LDL-C of the study groups obese, overweight and healthy.

Figure 2: Correlation between BMI and CHO/LDL ratio in obese subjects.

DISCUSSION

Recent studies have shown changing trends with almost doubled incidence of obesity among children, adolescents and young adults.9-11 Our study showed a statistically significant higher value of various lipid parameters like Total Cholesterol (TC), Triglycerides (TG) and LDL-C in overweight, obese individuals.

Figure 3: Correlation between BMI and LDL/HDL ratio in obese subjects.

These results are in accordance with a cross sectional study done during 2009-10 by Michael Khoury, Cedric Manlhiot et al which showed statistically significant association between lipid profile and measures of adiposity.12

Another case control study of adolescents done by Gilles Plourde on Caucasian adolescents also revealed that overall abnormal glucose and lipid profile were significantly associated with obesity.13

The Framingham study and other large epidemiologic studies have reported a correlation between obesity and increased coronary heart disease-related events.14-16 The proposed mechanisms for cardiac events in obese patients
include increased atherosclerosis related to dyslipidemia, insulin resistance, hypertension, and diabetes.17-19

The effects of dyslipidemia on cardiac events is generally considered to be largely due to increased TC20 and LDL cholesterol.20-27

Mechanism contributing to complications of altered lipid profile in obesity is due to excessive fat in visceral adipocytes which release an excess amount of free fatty acids. This further increases the synthesis of triglycerides and secretion of VLDL rich in triglycerides into circulation increasing fasting TG blood levels. Through cholesteryl ester transfer protein (CETP), TGs from VLDL are exchanged for cholesteryl in HDL. TG-rich LDL and VLDL subsequently undergoes hydrolysis by hepatic lipase or lipoprotein lipase leading to formation small, dense LDL particles which are more toxic and atherogenic.28 This atherogenicity is the root cause for all obesity related complications.

CONCLUSION

South Indian overweight and obese subjects, show a significant increase in the serum levels, of total cholesterol, triglycerides and LDL with high atherogenic index. Early and immediate interventional measures like increase in physical activity, healthy dietary habits and regular surveillance are required to prevent development of irreversible dangerous complications.

ACKNOWLEDGEMENTS

Authors would like to thank staff of SRM Medical College Hospital and Research Centre, kattankulathur and the participants for their great support.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee-957/IEC/2016

REFERENCES


