Opiate addiction - current trends and treatment options

Achal Bhatt*, Aminder Gill

Windsor University School of Medicine, Brightons Estates, Cayon, St. Kitts, West Indies

Received: 23 May 2016
Accepted: 11 June 2016

*Correspondence:
Dr. Achal Bhatt,
E-mail: doctorid2016@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Opioids are widely used drugs for treatment of pain and related disorders. Opiate addiction is a major public health concern in the United States causing significant increase in healthcare expenditure. They produce euphoria and sense of well-being which makes them addictive to some people. Used in higher doses they can lead to cardiac or respiratory compromise. They also impair cognition leading to impaired decision making. Opioids exert their effects by acting on three different types of receptors mu, delta, and kappa located on neuronal cell membranes causing inhibition of neurotransmitter release. Prolonged use of these drugs can lead to physical dependence causing withdrawal symptoms if a person stops using them. Commonly used medications to treat opiate addiction are methadone, LAAM (longer acting derivative of methadone), buprenorphine, and naltrexone.

Keywords: Opiates, Prescription, Addiction, Methadone, Naltrexone

INTRODUCTION

Opiate Addiction is a fast growing major public health problem in the United States and around the world. It causes significant morbidity and mortality related to overdose, HIV, and hepatitis C leading to higher healthcare costs. In 2009, the global opiate market was valued at a whooping $68 billion. Of that heroin users alone contributed to $61 billion. About 12-14 million heroin users consumed about 375 mt of heroin globally in the same year. Apart from heroin, non-medical use of different prescription opioids has been increasing in prevalence in some areas of the world especially in North America. About 1.2 million ER visits in 2009 were related to abuse of prescription opioids. This represents an increase of 98.4% since the year 2004.

In 2010, approximately 35 million people between the age 15-64 used an illicit opiate.1 The rates of abuse have been climbing up in the recent past with almost three millions Americans having abused heroin.2 In the US, mortality related to opioid overdose exceeds those caused by both heroin and cocaine combined.3 Access to, adherence to, and outcome for the treatment of general medical illness and infectious diseases such as HIV, viral hepatitis, and tuberculosis are reduced in opiate addicts. Addictions are also comorbid with major infectious diseases like HIV. Opioid addiction requires long term treatment and also is associated with poor outcomes with more than eighty percent of patients relapse into drug use. Despite stable levels in heroin use, prevalence of illicit opioid use in the United States has increased due to the illicit use of prescription opioids.1,4 In 2009, opiates caused second highest treatment admissions only next to alcohol abuse.5 Annual admissions increased from 280,000 to 421,000 between the years 1999 and 2009.5 The addiction potential of opioids is related to its effect on reward center in the brain producing pleasure and sense of well-being. People usually crush the opioid pills to snort or inject them to get as sense of euphoria but doing so they are putting themselves at serious complications like respiratory arrest, coma, and death in some instances. Opiate addiction causes impairment of cognitive functions by acting on the prefrontal cortex promoting compulsive drug use and relapse.6,7 It also causes memory deficits, cognitive disability and impaired
decision making. The degree of neuropsychological impairment has been related to the dose and duration of opiate abuse. These effects are long lasting and require rehabilitation for cognitive deficits that impair day to day activities thus adding significant treatment burden.8,9

Mechanism of opiate addiction

Genetic factors, environmental factors, and pharmacological effects of opiates all play a role in developing opiate addiction.2 Multiple studies have found an increased genetic risk for addiction in first degree relatives of addicts.2 Traumatic experiences early in life can also increase the risk of opioid addiction. In a study among rodents, maternal separation early in life increased vulnerability to opiate addiction in both the pup and the dam.10,11 Among humans, there is an association between PTSD and opiate addiction with more prevalence in people exposed to significant mental trauma in their life.2,12 Studies also show that selective breeding can produce rodent strains prone to opiate self-administration. There are some genetic factors that contribute to developing addictions and there seems to be an inter-individual variability in terms of treatment efficacy for drug addiction.14 Polymorphisms have been found in several genes encoding opiate receptors and ligands that are indicated in association with addiction.14,16 One particular gene is the MOP-r gene (OPRM1). These gene variants may function synergistically with genetic polymorphisms involved in common comorbid conditions, such as anxiety or depression, and stress responsiveness. Multiple genetic loci associated with opiate self-administration have been identified; and selective disruption of the gene encoding the mu opioid receptor, the principal target of opiates, can eliminate opiate self-administration and conditioned place preference. The primary site of action for heroin and other prescription opioids like oxycodone are MOP-r receptors. These drugs act as MOP-r agonists with short duration of action. This is in contrast to cocaine and other psychostimulants like amphetamines, which increases synaptic dopamine by inhibiting dopamine reuptake or an increase in release. Activating dopaminergic mesocortico/mesolimbic and nigrostriatal systems indirectly appears to be a common biological consequence of exposure to heroin and prescription opioids.17-19 Once the dopaminergic systems are activated there are regulatory changes at the mRNA level in neurotransmitter and neuropeptide systems.20-24

Chronic use of heroin or prescription opioids also causes upregulation of KOP-r/dynorphin system, which causes dysphoria, anhedonia, depression like or anxiety like states caused by opiates abuse. Such a counter-regulatory action by the KOP-r/dynorphin system may therefore mediate, in part, the negatively reinforcing aspects of withdrawal from drugs of abuse and may exacerbate the chronic relapsing nature of addictive diseases.25 The euphoria and abuse liability caused by opiates is related to its rewarding and reinforcing effects on brain because of its rapid entry. This is apparent in the transition from oral or intranasal to smoked or I.V routes in order to achieve immediate absorption. The brain has mu opioid receptors throughout with higher concentration in areas related to pain and reward such as thalamus, striatum, anterior cingulate cortex and amygdala. Opiates primarily target these mu receptors and activate them. This causes inhibition of GABA-mediated inhibition of dopaminergic neurons initiating a cascade of effects in the above mentioned areas of the brain.26 This results in release of dopamine into the projection fields, where it interacts with pre- and postsynaptic dopaminergic receptors.27 A substantial portion of MOP-r agonists’ rewarding effects and addiction potential may thus be related to this downstream activation in dopaminergic fields.

Treatment of opioid addiction

Commonly used medications to treat opiate abuse are the ones that acts similar to opiates themselves by attaching to the mu receptors in the brain. Methadone and LAAM (longer acting derivative of methadone) stimulate the cells like the illicit opioids but have different durations of action. Drugs like buprenorphine and naltrexone stimulate the cells in ways distinct from the illicit opioids. All these drugs are effective in treatment of opioid addiction but there is no randomized double-blind controlled trials available comparing all three medications (methadone, buprenorphine, and naltrexone). In a randomized trial comparing each of these medications found that 6 months retention rates of 84 percent, 59 percent and 21 percent for methadone 50 mg, buprenorphine 5 mg and naltrexone 50 mg respectively.28

Role of methadone in reducing heroin use has been long established. Methadone is a long-acting opiate used in treatment of opiate addiction. Compared to drugs like heroin, morphine, oxycodone and other opiates, methadone remains in the brain and body for a long time making its effects last for many days making it an ideal medication for treatment of opiate addiction. Methadone produce minimal tolerance and alleviates craving and compulsive drug use.29 Compared to buprenorphine, methadone when used at high doses exhibit longer periods of abstinence and drug-free urine screenings.30 Treatment with methadone reduces relapse rates as well thus enabling patients to concentrate on their day-to-day tasks, maintain relationships and holding jobs.31 Methadone is usually well tolerated but like other opiate agonists it can cause lethal respiratory suppression when given at high doses that exceed an individual’s tolerance. However for addiction treatment, higher levels of dosing supervision causes reduced mortality rates.32 LAAM, a longer acting derivative of methadone, can also be used for opiate addiction. It can be given three times a week but its side effect profile related to cardiac rhythm problems, especially prolonged QT interval, has limited its widespread use.

Buprenorphine acts as a partial agonist on mu opioid receptors with weak partial agonist effects on delta and
kappa receptors. It is usually taken sublingually in tablet form or film formulations. A subdermal implant that can deliver the drug for a period of six months is in development. The bioavailability of buprenorphine after taken sublingually is approximately 50%. Peak plasma levels are reached within 1-3 hours and the elimination half-life at steady state is approximately 37 hours, allowing for once daily, and in some instances every other day, dosing. It is bound to globulin fragments and is distributed to various tissues with an apparent volume of distribution during steady state of 3.7 L/kg. Buprenorphine is hepatically metabolized mainly by CP450 3A4 enzyme and is eliminated renally and through fecal routes. Buprenorphine elicits two different responses acting on the mu opioid receptors in the brain cells depending on the dose. At low dose it acts like methadone and at high dose it acts similar to naltrexone by blocking the receptors strongly and can precipitate withdrawal in highly dependent patients. Because of its safety and convenient dosing, it may be useful for treating opioid addiction in primary care settings, which is especially helpful since most opioid addicts have significant medical problems (for example, hepatitis B or C and HIV infection). Buprenorphine can be given three times per week compared to methadone which needs to be taken every day; this would be a safer choice than methadone and also increases compliance and decrease office or methadone clinic visits. Also, it has less overdose potential than methadone since it blocks other opioids and even itself as the dosage increases.

Naltrexone is another opiate that helps patients avoid relapse after detoxification. It is a semi-synthetic mu and kappa opioid receptor antagonist used in the treatment of opiate addiction. It can be administered either orally or intramuscularly. Naltrexone attaches to the mu receptors hundreds times more strongly than other opioids do but it does not promote the brain processes responsible to produce feelings of pleasure. This is the reason the compliance rates are lower for naltrexone compared to other opiates. The mechanism of action for naltrexone in treating opiate addiction is different than that of buprenorphine and methadone. Naltrexone can achieve 95% mu receptor occupancy following steady state after oral administration. Its safety is well established. In some patients it can cause hepatotoxicity in high doses thus it is used with caution in patients with acute hepatitis and end stage hepatic disease. Naltrexone may precipitate withdrawal in patients with physical dependence on opioids since it is an opiate antagonist. The other characteristic that differentiates naltrexone from methadone and buprenorphine is that it has no intrinsic opiate activity, and thus posing a minimal risk abuse.

CONCLUSION

Opiate addiction is a growing public health problem in the United States and around the world. Understanding the disease process and clinical awareness of the neurohormonal basis of opioid dependence is quite essential in treatment of patients with opiate addiction. Though the data shows that pharmacological treatment with methadone, buprenorphine, and naltrexone have superior treatment outcomes to non-medication based therapies, medications alone are not effective in treatment of opioid addiction. Understanding the psychosocial aspects of addiction accompanied by appropriate psychosocial treatments combined with pharmacological therapy will be an effective strategy to combat opiate addiction.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

24. Zhou Y, Bendor J, Hofmann L, Randesi M, Ho A, Kreek MJ. Mu opioid receptor and orexin/hypocere-