Biosynthesis of silver nanoparticles using indigenous Xanthorrhoea glauca leaf extract and their antibacterial activity against Escherichia coli and Staphylococcus epidermis

Authors

  • Monaliben Shah Murdoch Applied Nanotechnology Research Group. Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150
  • Gérrard Eddy Jai Poinern Murdoch Applied Nanotechnology Research Group. Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150
  • Derek Fawcett Murdoch Applied Nanotechnology Research Group. Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150

DOI:

https://doi.org/10.18203/2320-6012.ijrms20161971

Keywords:

Silver nanoparticles, Antimicrobial activity, Green bio synthesis, Xanthorrhoea glauca

Abstract

Background:This study for the first time presents an environmentally friendly, room temperature procedure for synthesizing silver (Ag) nanoparticles via the leaf extract taken from Xanthorrhoea glauca.

Methods: The simple and straightforward green chemistry based technique uses the leaf extract that acts as both reducing agent and capping agent to produce Ag nanoparticles which are subsequently quantified using advanced characterisation techniques. In addition, antibacterial studies were conducted using the Kirby-Bauer sensitivity method.

Results: Advanced characterisation revealed the synthesised particles had a variety of shapes including cubes, truncated triangular and hexagonal plates, and ranged in size from 50 nm up to 200 nm. The Gram-positive bacteria Staphylococcus epidermis showed the maximum zone of inhibition at 11 mm.

Conclusions: The study has shown that the leaf extract was able to synthesis Ag nanoparticles with antibacterial activity against Escherichia coli and Staphylococcus epidermis.

Metrics

Metrics Loading ...

References

Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications. 2008;1:17-32.

Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37:1896-908.

Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces. 2012;4(12):7007-10.

Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(3):1-6.

Zaniewski AM, Schriver M, Lee JG, Crommie MF, Zettl A. Electronic and optical of metal nanoparticles filled graphene sandwiches. J Appl Phys Lett. 2013;102(023108):1-5.

Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine. 2011;6:1117-27.

Luyts K, Napierska D, Nemery B, Hoet PHM. How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ Sci Processes Impact. 2013;15:23-38.

Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E. 2010;42:1417-24.

Kumar P, Singh P, Kumari K, Chandra RC. A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Mater Lett. 2011;65:595-7.

Lengke M, Southam G. Bioaccumulation of gold by sulphate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Acta. 2006;70(14):3646-61.

Ahmad A, Senapati S, Khan MI, Sastry M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete Rhodococcus species. Nanotechnology. 2003;14:824-8.

Kuber C, Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B. 2006;47:160-4.

Poinern GEJ, Le X, Chapman P, Fawcett D. Green biosynthesis of gold nanoparticles using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bulletin. 2013;46:165-73.

Geetha N, Geetha TS, Manonmani P, Thiyagarajan M. Green synthesis of silver nanoparticles using Cymbopogan Citratus (Dc) Stapf. Extract and Its Antibacterial Activity. Aust. J Basic and Appl Sci. 2014;8(3):324-31.

Sheny DS, Mathew T, Philip D. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta Part A. 2011;79: 254-62.

Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids and Surf B. 2011;82:497-504.

Jacob J, Mukherjee T, Kapoor S. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts. Mater Sci Eng C Mater Biol Appl. 2012;32:1827-34.

Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plants. Biotechnology Advances. 2013;31:346-56.

Rai M, Yadav A, Gade A. CRC 675 - Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol. 2008;28(4):277-84.

Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42:3066-74.

Wong KKY, Liu XL. Silver nanoparticles: the real ‘silver bullet’ in clinical medicine? Med Chem Comm. 2010;1:125-31.

Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect. 2007;8(3):397-403.

Cox SG, Cullingworth L, Rode H. Treatment of paedi-atricburns with a nanocrystalline silver dressing compared with standard wound care in a burns unit: a cost analysis. S Afr Med J. 2011;101(10):728-31.

Poinern GEJ, Shah M, Chapman P, Fawcett D. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bulletin. 2013;2(1):130101,1-5.

Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. In Murray PR, Baron EJ, Jorgensen JH, Landry ML, and Pfaller MA, ed. Manual of clinical microbiology. 9th ed. ASM Press, Washington, DC. 2007:1:1152-72.

ChandanSingh ML. Vinect-Sharma KR. A green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. Dig J Nanomater Biostruct. 2011;6(2):535-42.

Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma AA. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B. Biointerfaces. 2010;81(1):81-6.

Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA. Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J biopesticides. 2012;288(Suppl 5):95-102.

Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solution of black tea leaf extracts. Colloids Surf B Biointerfaces. 2009;7(1):113-8.

Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A. Green syntheis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A: Physicochem Eng Asp. 2009;348:212-6.

Phanjom P, Zoremi E, Mazumder J, Saha M, Baruah SB. Green synthesis of silver nanoparticles using leaf extract of Myrica esculenta. Int J NanoSci Nanotechnol. 2012;3:73-9.

Geetha N, Geetha TS, Manonmani P, Thiyagarajan M. Green synthesis of silver nanoparticles using Cymbopogan Citratus (Dc) Stapf. extract and its antibacterial activity. J Basic Appl Sci. 2014;8(3):324-31.

Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry. 2012;2:141-7.

Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. Effect of biologically synthesised silver nanoparticles on Straphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol. 2012;6(3):110-4.

Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531-51.

Durga-Praveena V, Vijaya-Kumar K. Green synthesis of Silver Nanoparticles from Achyranthes Aspera plant extract in chitosan matrix and evaluation of their antimicrobial activities. Indian Journal of Advances in Chemical Science. 2014;2(3):171-7.

Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:103-12.

Downloads

Published

2017-01-03

How to Cite

Shah, M., Poinern, G. E. J., & Fawcett, D. (2017). Biosynthesis of silver nanoparticles using indigenous Xanthorrhoea glauca leaf extract and their antibacterial activity against Escherichia coli and Staphylococcus epidermis. International Journal of Research in Medical Sciences, 4(7), 2886–2892. https://doi.org/10.18203/2320-6012.ijrms20161971

Issue

Section

Original Research Articles