Published: 2017-01-04

Current status of nanotechnology in urology

Suresh K. Goyal, Amilal Bhat, Harsh Gupta


Nanotechnology has been investigated for its applications in medicine. The objective of this review was to summarize the current applications of nanotechnology in Urology. A systematic search of literature was performed and relevant articles were analyzed with specific reference to applications in Urology. Nanotechnology has applications in diagnostic urology like in uroimaging using nanoparticles and nanosensors. It has therapeutic applications in infections, malignancies, genetic disease using targeted drug delivery, gene transfers, nano device-based manipulations etc. Nanotechnology has many applications in Urology. More efforts are required to make these applications practically feasible and affordable.


Nanotechnology, Urology, Nanoparticles, Nanomedicine

Full Text:



Taniguchi N. On the basic concept of ‘nano-technology’. Proc Intl Conf Prod Eng Tokyo, Part II, Japan Society of Precision Engineering, 5–10.

Drexler KE. Unbounding the future: The nanotechnology revolution. New York: Harper Collins; 1991.

Shergill IS, Rao A, Arya M, Patel H, Gill IS. Nanotechnology: Potential applications in Urology. BJU International. 2006;97:219-25.

Freitas RA Jr. Exploratory design in medical Nanotechnology: A Mechanical Artificial Red Cell, Artificial Cells, Blood Substitutes, and Immobil. Biotech. 1998;26:411-30.

Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Del Rev. 2008;60(11):1252-65.

Harisinghani MG, Barentsz J, Hahn PF. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Engl J Med. 2003;348(25):2491-9.

Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med. 2002;47(2):292-7.

Guimaraes AR, Tabatabei S, Dahl D, McDougal WS, Weissleder R, Harisinghani MG. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer. Urology. 2008;71(4):708-12.

Harisinghani MG, Saksena M, Ross RW, Tabatabaei S, Dahl D, McDougal S, et al. A pilot study of lymphotrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology. 2005;66(5):1066-71.

Son A, Dhirapong A, Dosev DK, Kennedy IM, Weiss RH, Hristova KR. Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Anal Bioanal Chem. 2008;390(7):1829-35.

Basu M, Seggerson S, Henshaw J, Jiang J, del A Cordona R, Lefave C, et al. Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA). Glycoconj J. 2004;21(8-9):487-96.

Wei He W, Wang D, Ye Z, Qian W, Tao Y, Shi X, et al. Application of a nanotechnology antimicrobial spray to prevent lower urinary tract infection: a multicenter urology trial. Journal of Translational Medicine. 2012;10(Suppl 1):S14.

Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer. 2004;112(2):335-40.

Barenholz Y. Doxil® – the first FDA approved nano-drug: lessons learned. J Control Release. 2012;160:117-34.

McNealy TL, Trojan L, Knoll T, Alken P, Michel MS. Micelle delivery of doxorubicin increases cytotoxicity to prostate carcinoma cells. Urol Res. 2004;32(4):255-60.

Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation of a nanotechnology based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol. 2008;32(5):1119-23.

Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869-76.

Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR Jr. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem. 2004;15 (6):1174-81.

Fang Y, Wu J, Li T, Liu W, Gao L, Luo Y. Nanoparticle mediated chemotherapy of hormone refractory prostate cancer with a novel combi-molecule. Am J Transl Res. 2015;7(8):1440-9.

Kawai N, Futakuchi M, Yoshida T, Ito A, Sato S, Naiki T, et al. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. Prostate. 2008;68(7):784-92.

Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol. 2008;179(2):748-53.

Lu Z, Yeh TK, Tsai M, Au JL, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res. 2004;10(22):7677-84.

Derycke AS, Kamuhabwa A, Gijsens A, Roskams T, De Vos D, Kasran A, et al. Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells. J Natl Cancer Inst. 2004;96(21):1620-30.

Kiyokawa H, Igawa Y, Muraishi O, Katsuyama Y, Iizuka K, Nishizawa O. Distribution of doxorubicin in the bladder wall and regional lymph nodes after bladder submucosal injection of liposomal doxorubicin in the dog. J Urol. 1999;161(2):665-7.

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60.

Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm. 2005;2(5):373-83.

Nissenson AR, Ronco C, Pergamit G, Edelstein M, Watts R. Continuously functioning artificial nephron system: the promise of nanotechnology. Hemodial Int. 2005;9(3):210-7.

Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26(15):2491-2500.

Verma IM, Somia N. Gene therapy -- promises, problems and prospects. Nature. 1997;389(6648):239-42.

Mastrobattista E, van der Aa MA, Hennink WE, Crommelin DJ. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov. 2006;5(2):115-21.

Tyagi P, Wu PC, Chancellor M, Yoshimura N, Huang L. Recenadvances in intravesical drug/gene delivery. Mol Pharm. 2006;3:369-79.

Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85:427-43.

Fortier C, Durocher Y, De Crescenzo G. Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine (Lond). 2014;9:135-51.

Hattori Y, Maitani Y. Folate-linked lipid-based nanoparticle for targeted gene delivery. Curr Drug Del. 2005;2(3):243-52.

Ma Q, Lin ZH, Yang N, Li Y, Su XG. A novel carboxymethyl chitosan-quantum dot-based intracellular probe for ZN(2+) ion sensing in prostate cancer cells. Acta Biomater. 2014;10: 868-74.

Anker, Jeffrey N. Biosensing with plasmonic nanosensors. Nature Materials. 2008;7:442-53.

Oulton RF. Plasmon lasers at deep subwavelength scale. Nature. 2009;461:629-32.

Khajavikhan M. Thresholdless nanoscale coaxial lasers. Nature. 2012;482:204-7.

Olson R. Focused Study on Biotechnology and Nanotechnology, Military Health Service System (MHSS)-2020, U.S. Department of Defense, Health Affairs, September.