Antimicrobial susceptibility pattern and phenotypic detection of metallo-beta lactamases in K. pneumoniae isolates in a tertiary care hospital

Authors

  • Ansar Ahmad Paray Department of Microbiology, Adesh Institute of Medical Sciences and Research, Bathinda, Punjab, India
  • Amandeep Kaur Department of Microbiology, Adesh Institute of Medical Sciences and Research, Bathinda, Punjab, India

DOI:

https://doi.org/10.18203/2320-6012.ijrms20222519

Keywords:

Carbapenems, Combined disc method, Imipenem-EDTA, K. pneumoniae, Metallo betalactamase

Abstract

Background: K. pneumoniae is the most important pathogen causing community as well as nosocomial infections. The study was conducted with the aim to study antimicrobial susceptibility pattern of K. pneumoniae isolates as well as to detect MBL in carbapenem resistant isolates.

Methods: The study was conducted for a period of six months from October 2021 to March 2022. All isolates of K. pneumoniae were obtained from various clinical samples. Antimicrobial susceptibility testing was done by Vitek 2 Compact system. Metallo β-lactamase detection was done by imipenem-EDTA combined disk method.

Results: Out of total 1336 growth positive isolates, 248 isolates were of K. pneumoniae. From total 248 isolates, 162 were obtained from male patients and 86 were obtained from female patients. Maximum number (97) of isolates was obtained from age group of 61-80 years. Maximum (30.24%) isolates of K. pneumoniae were from urine and minimum (4.43%) from body fluids. Isolates were highly resistant towards antimicrobials tested whereas moderate sensitivity was reported for ertapenem, imipenem, meropenem and gentamicin. Isolates were highly sensitive to colistin followed by amikacin and tigecycline. MBL production was observed in 84.5% carbapenem resistant isolates.

Conclusions: This present study highlighted that multidrug resistant strains of K. pneumoniae are common in tertiary care hospitals. Unwarranted and unrestricted usage of antimicrobials is associated with growing emergence of resistance. Therefore, regular monitoring of carbapenem resistance is important for developing strategies to control infections caused by K. pneumoniae.

Author Biography

Ansar Ahmad Paray, Department of Microbiology, Adesh Institute of Medical Sciences and Research, Bathinda, Punjab, India

Department of Microbiology

 PROFESSOR

References

Wu X, Shi Q, Shen S, Huang C and Wu H. Clinical and bacterial characteristics of Klebsiella pneumoniae affecting 30-day mortality in patients with bloodstream infection. Front Cell Infect Microbiol. 2021;11:1-12.

Mirzaie A, Ranjbir R. Antibiotic resistance, virulence associated gene analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical specimens. AMB Exp. 2021;11(122):1-11.

Venezia SN, Kondratyeve K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuffle for antibiotic resistance. FEMS Microbiol Rev. 2017;15-275.

Birgy A, Bidet P, Genel N, Doit C, Decre D, Arlet G, et al. Phenotypic screening of carbapenemases and associated-lactamases in carbapenem-resistant enterobacteriaceae. J Clin Microbiol. 2012;50(4):1295-302.

Deeba B, Manzoor AT, Bashir AF, Gulnaz B, Danish Z, Shabir A, et al. Detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afr J Microbiol Res. 2011;5(2):164-72.

Moubareck CA, Halat DH. Insights into Acinetobacter baumannii: a review of Microbiology, virulence, and resistance traits in Threatening Nosocomial Pathogen. Antibiotics. 2020;9(3):119-25.

Picão RC, Andrade SS, Nicoletti AG, Campana EH, Moraes GC, Mendes RE, et al. Metallo-beta-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol. 2008;46(6):2028-37.

Bonnin RA, Naas T, Poirel L, Nordmann P. Phenotypic, biochemical, and molecular techniques for detection of metallo-_-Lactamase NDM in Acinetobacter baumannii. J Clin Microbiol. 2012;50(4):1419-21.

Sachdeva R, Sharma B, Sharma R. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa. J Lab Phys. 2017;9(4):249-53.

Moulana Z, Babazadeh A, Eslamdost Z, Shokri M, Ebrahimpour S. Phenotypic and genotypic detection of metallo-beta-lactamases in carbapenem resistant Acinetobacter baumannii. Caspian J Intern Med. 2020;11(1):171-6

Szejbach A, Mikucka A, Bogiel T, Gospodaker E. Usefulness of phenotypic and geotypic methods for metallo-beta-lactamases detection in carbapenem-resistant Acinetobacter baumannii strains. Med Sci Monit Basic Res. 2013:19:32-8.

Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40(10):3798-801.

Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. Scient World J. 2012;2012:1-7.

Collee JG, Marr W. Specimen collection, Culture containers and Medias. In: Collee JG, Fraser AG, Marmon BP, and Simmons A, eds. Mackie and McCartney Practical Medical Microbiology. 14th edn. Elsevier; 2008:14-27.

Collee JG, Marr W, Watt B. Tests for identification of Bacteria. In: Collee JG, Fraser AG, Marmon BP, Simmons A, Eds. In Mackie and McCartney Practical Medical Microbiology. 14th edn. Elsevier; 2008:131-150.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI Supplement M100. 30th Edn. Wayne: PA. 2017.

Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019;13(20):1-8.

Gill MK, Gill AK, Khanna A. Antibiogram of Klebsiella pneumoniae isolated from various clinical samples of hospitalized patients in a tertiary care hospital of North India. Trop J Pathol Microbiol. 2019;5(8):512-6.

Farkhanda, Rachna, Verma BS, Gupta P. Isolation and antimicrobial susceptibility pattern of Klebsiella Pneumoniae in sputum sample with lower respiratory tract infection suspected patients at a Tertiary Care Hospital Rajasthan. J Med Sci Clin Res. 2019;7(10):598-604.

Sodhi K, Mittal V, Arya M, Kumar M, Phillips A, Kajla B. Pattern of colistin resistance in Klebsiella isolates in an Intensive Care Unit of a tertiary care hospital in India. J Infect Public Health. 2020;13(7):1018-21.

Sonia SJ, Afroz S, Rasheduzzaman M, Uddin KH, Shamsuzzaman SM. Prevalence and antimicrobial susceptibility pattern of Klebsiella pneumoniae isolated from various clinical specimens in a tertiary care hospital in Bangladesh. Med Today. 2020;32:95-9.

Odari R, Dawadi P. Prevalence of multidrug-resistant Klebsiella pneumoniae clinical isolates in Nepal. Journal of tropical medicine. 2022;2022.

Pyakurel S, Ansari M, Kattel S, Rai G, Shrestha P, Rai KR, et al. Prevalence of carbapenemase-producing Klebsiella pneumoniae at a tertiary care hospital in Kathmandu, Nepal. Trop Med Health. 2021;49(78):1-8.

Naqid IA, Hussein NR, Balatay AA, Saeed KA Ahmed HA. The antimicrobial resistance pattern of Klebsiella pneumonia isolated from the clinical specimens in Duhok City in Kurdistan region of Iraq. J Kermanshah Univ Med Sci. 2020;24(2):e106135.1-8.

Indrajith S, Mukhopadhyay AK, Chowdhury G, Farraj DAA, Alkufeidy RM, Natesan S, et al. Molecular insights of Carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples. J Infect Public Health. 2021;14(1):131-8.

Ssekatawa K, Byarugaba DK, Nakavuma JL, Kato CD, Ejobi F, Tweyongyere R, et al. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitals. Antimicrob Resist Infect Control. 2021;18;10(1):1-10.

Sathyavathy K, Madhusudhan BK. Isolation, identification, speciation and antibiotic susceptibility pattern of Klebsiella species among various clinical samples at tertiary care hospital. J Pharm Res Int. 2021;33(23A):78-87.

Bhavsar RA, Shah KV, Patel H, Tadvi J. Antibiogram of Klebsiella pneumoniae recovered from blood stream infection at tertiary care hospital, Baroda, Gujarat. IP Int J Med Microbiol Trop Dis. 2018;4(3):138-40.

Su C, Wu T, Meng B, Yue C, Sun Y, He L, et al. High Prevalence of Klebsiella pneumoniae infections in AnHui province: clinical characteristic and antimicrobial resistance. Infect Drug Resist. 2021;14:5069-78.

Shaikh NS, Shaikh SS, Acharya S, Moosa SS, Shaikh MH, Alzahrani FM, et al. Molecular epidemiological surveillance of CTX-M-15-producing Klebsiella pneumoniae from the patients of a teaching hospital in Sindh, Pakistan. F1000Research. 2021;10.

Gupta V, Garg R, Kumaraswamy K, Datta P, Mohi GK, Chander J. Phenotypic and genotypic characterization of carbapenem resistance mechanisms in Klebsiella pneumoniae from blood culture specimens: A study from North India. J Lab Phys. 2018;10:125-9.

Tian D, Pan F, Wang C, Sun Y, Zhang H. Resistance phenotype and clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Shanghai. Infect Drug Resist. 2018;11:1935-43.

Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19(1):1-9.

Oladipo EK, Awoyelu EH, Adeosun IJ, Ayandele AA. Antibacterial susceptibility of clinical isolates of Klebsiella pneumoniae in Nigeria to carbapenems. Iraqi J Sci. 2021;62(2):396-401.

Khalifa SM, Abd El-Aziz AM, Hassan R, Abdelmegeed ES. β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E. coli and K. pneumoniae. PLoS One. 2021;16(5):1-22.

Kashefieh M, Hosainzadegan H, Baghbanijavid S, Ghotaslou R. The molecular epidemiology of resistance to antibiotics among Klebsiella pneumoniae isolates in Azerbaijan, Iran. J Trop Med. 2021;25:1-11.

Saha AK. Pattern of antimicrobial susceptibility of Klebsiella pneumoniae isolated from urinary samples in urinary tract infection in a tertiary care hospital, Kishanganj, Bihar, 5 years’ experience. Int J Contemp Med Res. 2019;6(12):25-8.

Xiao S, Chen T, Wang H, Zeng Q, Chen Q, Yang Z, et al. Drug susceptibility and molecular epidemiology of Klebsiella pneumoniae bloodstream infection in ICU patients in Shanghai, China. Front Med. 2021;8:1-7.

Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K. Incidence of metallo betalactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes. 2014;7:557

Agrawal R, Sumana MN, Kishore A, Kulkarni M. Simple method for detection of metallo- β-lactamase among Gram negative isolates. Online J Health Allied Sci. 2015;14(3):1-4.

Javed H, Ejaz H, Zafar A, Rathore AW, Haq I. Metallo-beta-lactamase producing Escherichia coli and Klebsiella pneumoniae: a rising threat for hospitalized children. J Pak Med Assoc. 2016;66(9):1068-72.

Hoang CQ, Nguyen HD, Vu HQ, Nguyen AT, Pham BT, Tran TL, et al. Emergence of New Delhi metallo beta-lactamase (NDM) and Klebsiella pneumoniae carbapenemase (KPC) production by Escherichia coli and Klebsiella pneumoniae in Southern Vietnam and appropriate methods of detection: a cross-sectional study. Biomed Res Int. 2019;2019:1-9.

Downloads

Published

2022-09-27

How to Cite

Paray, A. A., & Kaur, A. (2022). Antimicrobial susceptibility pattern and phenotypic detection of metallo-beta lactamases in K. pneumoniae isolates in a tertiary care hospital. International Journal of Research in Medical Sciences, 10(10), 2173–2178. https://doi.org/10.18203/2320-6012.ijrms20222519

Issue

Section

Original Research Articles