Photoinactivation of extensively drug-resistant gram-negative bacteria from healthcare-associated infections in Venezuela
DOI:
https://doi.org/10.18203/2320-6012.ijrms20232764Keywords:
Photoinactivation, Blue light, Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, Extensively drug-resistant strainsAbstract
Background: The overwhelming advance of antimicrobial resistance demands the incorporation of new antibiotics and effective alternative treatments, and among the latter, blue light phototherapy. The objective of this study was to evaluate the photoinactivation effect of irradiation with blue light (405 nm) on extensively drug-resistance (XDR) Gram-negative bacteria from healthcare-associated infections
Methods: A lighting unit was made using a 50W LED fitted to a condenser lens to create an irradiance gradient. After characterization of the lamp and standardization of microbiological procedures, bacterial inocula of 1.5×107 CFU of 40 bacterial strains: 27 Enterobacterales and 13 Pseudomonadales were subjected to irradiation for 15 minutes with blue light. The results were analysed with the SPSS program and by applying the Shapiro-Wilk and Mann-Whitney tests. Survival rates were also calculated.
Results: 82.5% of the strains were photoinactivated, with inhibition thresholds between 86 and 126 J/cm2 for most of the Enterobacterales and below 86 J/cm2 in large part of the Pseudomonadales, these being the most sensitive group. 17.5% of the strains showed tolerance to irradiation thresholds up to>171 J/cm2. The survival rate decreased as the halo of inhibition of bacterial growth increased. The photoinactivating effect of blue light on the bacteria studied was a characteristic independent of the complexity of the resistance pattern that these strains presented.
Conclusions: The findings obtained show that blue light has an important photoinactivating effect against XDR Gram-negative bacteria of nosocomial origin and can be considered as a future therapeutic alternative to contain the phenomenon of antimicrobial resistance.
References
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629-55.
Global research agenda for antimicrobial resistance in human health. Policy brief. 2023. Available at: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/who-global-research-agenda-for-amr-in-human-health---policy-brief.pdf?sfvrsn=f86aa073_4&download=true. Accessed on 26 June 2023.
Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Available at: https://apps.who.int/iris/handle/10665/311820. Accessed on 12 June 2023.
Haridas D, Atreya CD. The microbicidal potential of visible blue light in clinical medicine and public health. Front Med. 2022;9:905606.
Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY. Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J Lasers Med Sci. 2018;9(3):154-60.
Rapacka-Zdonczyk A, Wozniak A, Kruszewska B, Waleron K, Grinholc M. Can gram-negative bacteria develop resistance to antimicrobial blue light treatment? Int J Mol Sci. 2021;22:11579.
Huang S, Lin S, Qin H, Jiang H, Liu M. the parameters affecting antimicrobial efficiency of antimicrobial blue light therapy: a review and prospect. Biomedicines. 2023;11:1197.
Songsantiphap C, Vanichanan J, Chatsuwan T, Asawanonda P, Boontaveeyuwat E. Methylene blue–mediated antimicrobial photodynamic therapy against clinical isolates of extensively drug resistant gram-negative bacteria causing nosocomial infections in Thailand, an in vitro study. Front Cell Infect Microbiol. 2022;12:929242.
Hou W, Shi G, Wu S, Mo J, Shen L, Zhang X, Zhu Y. Application of fullerenes as photosensitizers for antimicrobial photodynamic inactivation: a review. Front Microbiol. 2022;13:957698.
Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, et al. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. JID. 2014;3:209
Wozniak A, Rapacka-Zdonczyk A, Mutters NT and Grinholc M. Antimicrobials are a photodynamic inactivation adjuvant for the eradication of extensively drug-resistant Acinetobacter baumannii. Front Microbiol. 2019;10:229.
Halstead FD, Ahmed Z, Bishop JRB, Oppenheim BA. The potential of visible blue light (405 nm) as a novel decontamination strategy for carbapenemase-producing Enterobacteriaceae (CPE). Antimicrob Resist Infect Control. 2019;8:14.
Cabral J, Rodrigues AG. Blue light disinfection in hospital infection control: advantages, drawbacks, and pitfalls. Antibiotics. 2019;8:58.
Dos Anjos C, Sellera FP, de Freitas ML, Gargano RG, Telles EO, Freitas RO, et al. Inactivation of milk-borne pathogens by blue light exposure. J Dairy Sci. 2020; 103(2):1261-8.
Abreu S, Varela Y, Millán B, Araque M. Klebsiella pneumoniae y Escherichia coli productoras de beta-lactamasas de espectro extenso aisladas en pacientes con infección asociada a los cuidados de la salud en un hospital universitario. Enferm Infec Microbiol. 2014; 34(3):92-9.
Labrador I, Araque M. First description of KPC-2 producing Klebsiella oxytoca isolated from a pediatric patient with nosocomial pneumonia in Venezuela. Cases Rep Infect Dis. 2014.
Serrano-Uribe R, Flores-Carrero A, Labrador I, Araque M. Epidemiología y caracterización molecular de bacilos Gram negativos multirresistentes productores de sepsis intrahospitalaria en pacientes adultos. Avan Biomed. 2016;5(1):26-37.
Quijada-Martínez P, Flores-Carrero A, Labrador I, Millán Y, Araque M. Molecular characterization of multidrug-resistant Gram-negative bacilli producing catheter–associated urinary tract infections in internal medicine services of a Venezuelan University Hospital. Austin J Inf Dis. 2017;4(1):1030.
Millán Y, Araque M. Ramírez A. Distribución de grupos filogenéticos, factores de virulencia y susceptibilidad antimicrobiana en cepas de Escherichia coli uropatógena. Rev Chilena Inf. 2020;37(2):117-23.
Hamblin MR, Abrahamse H. Can light-based approaches overcome antimicrobial resistance? Drug Dev Res. 2019;80(1):48-67.
Hadi J, Wu S, Soni A, Gardner A, Brightwell, G. Genetic factors affect the survival and behaviours of selected bacteria during antimicrobial blue light treatment. Int J Mol Sci. 2021; 22(19):10452.
Dos Anjos Ca, Sabino CP, Bueris V, Fernandes MR, Pogliani FC, Lincopan N, Selleraa FP. Antimicrobial blue light inactivation of international clones of multidrug-resistant Escherichia coli ST10, ST131 and ST648. Photodiag Photodyn Ther. 2019;27:51-3.
Fila G, Krychowiak M, Rychlowski M, Bielawski KP, Grinholc M. Antimicrobial blue light photoinactivation of Pseudomonas aeruginosa: quorum sensing signaling molecules, biofilm formation and pathogenicity. J Biophotonics. 2018;11(11):e201800079.
Leanse L, Harrington O, Fang Y, Imran A, Xueping, S, Tianhong D. Evaluating the potential for resistance development to antimicrobial blue light (at 405 nm) in Gram-negative bacteria: in vitro and in vivo studies. Front Microbiol. 2018;9:1-7.
Mih N, Monk JM, Fang X, Catoiu E, Heckmann D, Yang L, Palsson BO. Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes. BMC Bioinformatics. 2020; 21(1):162.
Wozniak A, Burzynska N, Zybała I, Empel J, Grinholc M. Priming effect with photoinactivation against extensively drug-resistant Enterobacter cloacae and Klebsiella pneumoniae. J Photochem Photobiol. 2022; 235:1125-54.