Non-coding RNAs in the brain: new class of prospective biomarkers and therapeutics




Noncoding RNA, Antisense oligonuclotides, Gene silencing, RNA interference, Gene regulation, RNA sponge, Neurological disorders, Biomarkers, Therapeutics


The human genome encrypts around 20,000 protein coding genes, constituting around 1% of the total human genome sequence. The rest of it initially labeled as a “junk DNA” is transcribed to a distinct class of non-coding RNAs (ncRNAs) which do not code for any protein in the cell and their presence was quite intriguing to the researchers. The recent studies, however, have surprisingly revealed the vital roles of these ncRNAs in regulating an array of diverse cellular and biological processes in different organs including brain. The dysfunction of these regulatory ncRNAs in human brain causes certain neurological disorders and brain tumors which earlier have been widely linked to various risk factors such as oxidative stress, genetic mutations, aberrant protein degradation and dysfunctional neural network.  This review provides an    overview of different types of ncRNAs, their regulatory roles in brain functions and neurological disorders along with their   prospects to be used as potential biomarkers and therapeutics.



Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F et al. Human-specific transcriptional networks in the brain. Neuron. 2012;75(4):601-17.

Somel M, Liu X, Khaitovich P. Human brain evolution: transcripts, metabolites and their regulators. Nature Rev Neurosci. 2013;14(2):112-27.

Johnson MB, Kawasawa YI, Mason CE, Krsnik Ž, Coppola G, Bogdanović D et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009;62(4):494-509.

Mercer TR, Dinger ME, Mariani J, Kosik KS, Mehler MF, Mattick JS. Noncoding RNAs in long-term memory formation. Neuroscientist. 2008;14(5):434-45.

Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al. A long nuclear‐retained non‐coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29(18):3082-93.

Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88(5):861-77.

Qureshi IA, Mehler MF. Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics. 2013;10:632-46.

Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012;149(3):693-707.

Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Molecular cell. 2014;53(6):1005-19.

Bond AM, VanGompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neurosci. 2009;12(8):1020-7.

Onoguchi M, Hirabayashi Y, Koseki H, Gotoh Y. A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proceedings National Academy Sci. 2012;109(42):16939-44.

Ng SY, Johnson R, Stanton LW. Human long non‐coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31(3):522-33.

Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Progress Neurobiol. 2015;134:122-39.

Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V, Kriegstein AR et al. A primate lncRNA mediates notch signaling during neuronal development by sequestering miRNA. Neuron. 2016;90(6):1174-88.

Tochitani S, Hayashizaki Y. Nkx2. 2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochemical Biophysical Res Communications. 2008;372(4):691-6.

Sauvageau M. Goff L, Lodato S, Bonev B, Groff AF, Gerhardinger C et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749.

Johnson R, Noble W, Tartaglia GG, Buckley NJ. Neurodegeneration as an RNA disorder. Progress in Neurobiol. 2012;99(3):293-315.

Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Frontiers Genetics. 2013;3:326.

Maniati MS, Maniati M, Yousefi T, Ahmadi‐Ahangar A, Tehrani SS. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases. J Cellular Biochem. 2019;120(6):8908-18.

Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 2012;13:528-41.

Mehler MF, Mattick JS. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiological Rev. 2007;87(3):799-823.

Roy J, Sarkar A, Parida S, Ghosh Z, Mallick B. Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis. Molecular Bio Systems. 2017;13(3):565-76.

Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Molecular neurobiol. 2011;44:359-73.

Katrien VR, Jeroen P, George AC. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Molecular Diagnostics. 2013;13(2):183-204.

Smith RM, Webb A, Papp AC, Newman LC, Handelman SK, Suhy A, Mascarenhas R, Oberdick J, Sadee W. Whole transcriptome RNA-Seq allelic expression in human brain. BMC Henomics. 2013;14:1-5.

Amaral PP, Mattick JS. Noncoding RNA in development. Mammalian genome. 2008;19:454-92.

Zhang XQ, Wang ZL, Poon MW, Yang JH. Spatial-temporal transcriptional dynamics of long non-coding RNAs in human brain. Human Molecular Genetics. 2017;26(16):3202-11.

Chen W, Qin C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015;12(7):701-8.

Andersen RE, Lim DA. Forging our understanding of lncRNAs in the brain. Cell Tissue Res. 2018;371:55-71.

Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol. 2017;14(8):1028-34.

Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Frontiers Genetics. 2015;6:2.

Esmaeili M, Keshani M, Vakilian M, Esmaeili M, Peymani M, Forootan FS et al. Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways. Gene. 2020;753:144796.

Losko M, Kotlinowski J, Jura J. Long noncoding RNAs in metabolic syndrome related disorders. Mediators Inflammation. 2016;2016.

Morey C, Avner P. Employment opportunities for non-coding RNAs. FEBS letters. 2004;567(1):27-34.

Peng Y, Li J, Zhu L. Cancer and non-coding RNAs. Nutritional Epigenomics. 2019;119-32.

Giegé R. Toward a more complete view of tRNA biology. Nature Structural Molecular Biol. 2008;15(10):1007-14.

Dahlberg AE. The functional role of ribosomal RNA in protein synthesis. Cell. 1989;57(4):525-9.

O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018,9:402.

Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A et al. Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci. 2017;13(2):48.

Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem. 2015,84:405-33.

Bachellerie JP, Cavaillé J, Hüttenhofer A. The expanding snoRNA world. Biochimie. 2002;84(8):775-90.

Karijolich J, Yu YT. Spliceosomal snRNA modifications and their function. RNA Biol. 2010;7(2):192-204.

Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651-69.

Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Molecular Cancer. 2020;19:1-9.

Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ et al. Tiny RNAs associated with transcription start sites in animals. Nature Genetics. 2009;41(5):572-8.

Bartel DP MicroRNAs: Genomics, Review Biogenesis, Mechanism, and Function. Cell. 2012;116:281-97.

Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annual Rev Biochem. 2010;79:351-79.

Nakahara K, Carthew RW. Expanding roles for miRNAs and siRNAs in cell regulation. Current Opinion Cell Biol. 2004;16(2):127-33.

Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117(1):69-81.

Xu W, Jiang X, Huang L. RNA interference technology. Comprehensive Biotechnol. 2019;560.

Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nature reviews Molecular Cell Biol. 2011;12(4):246-58.

Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development 2008;135(1):3-9.

Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature reviews Molecular Cell Biol. 2007;8(3):209-20.

Huang ZH, Du YP, Wen JT, Lu BF, Zhao Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discovery. 2022;8(1):259.

Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045.

Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genetics. 2013;9(6):e1003569.

FANTOM Consortium, Carninci P, Gojobori T, Ikeo K, Hayashizaki, Y. The transcriptional landscape of the mammalian genome. Science. 2015;309(5740):1559-63.

Wei-Yi Z, Cai ZR, Liu J, De-Shen W, Ju HQ, Rui-Hua X. Circular RNA: metabolism, functions and interactions with proteins. Molecular Cancer. 2020;19:1.

Chen B, Huang S. Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer letters. 2018;418:41-50.

Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443(7108):167-72.

Bae BI, Jayaraman D, Walsh CA. Genetic changes shaping the human brain. Developmental Cell. 2015;32(4):423-34.

Rusconi F, Battaglioli E, Venturin M. Psychiatric disorders and lncRNAs: a synaptic match. Int J Molecular Sci. 2020;21(9):3030.

Salta E, De Strooper B. Noncoding RNAs in neurodegeneration. Nature Rev Neurosci. 2017;18(10):627-40.

Pomper N, Liu Y, Hoye ML, Dougherty JD, Miller TM. CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system. Scientific Rep. 2020;10(1):4921.

Isakova A, Fehlmann T, Keller A, Quake SR. A mouse tissue atlas of small noncoding RNA. Proceedings National Academy Sci. 2020;117(41):25634-45.

Dash S, Balasubramaniam M, Martínez-Rivera FJ, Godino A, Peck EG, Patnaik S et al. Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Scientific Rep. 2020;10(1):11197.

Sun Y, Luo ZM, Guo XM, Su DF, Liu X. An updated role of microRNA-124 in central nervous system disorders: a review. Frontiers Cellular Neurosci. 2015;9:193.

Gokool A, Anwar F, Voineagu I. The landscape of circular RNA expression in the human brain. Biological Psychiatr. 2020;87(3):294-304.

Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439(7074):283-9.

Zolotarov G, Fromm B, Legnini I, Ayoub S, Polese G, Maselli V et al. MicroRNAs are deeply linked to the emergence of the complex octopus’s brain. Sci Adv. 2022;8(47):eadd9938.

Iyengar BR, Choudhary A, Sarangdhar MA, Venkatesh KV, Gadgil CJ, Pillai B. Non-coding RNA interact to regulate neuronal development and function. Frontiers Cellular Neurosci. 2014;8:47.

Viollet S, Monot C, Cristofari G. L1 retrotransposition: The snap-velcro model and its consequences. Mobile genetic elements. 2014;4(2):e1003499.

D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nature neuroscience. 2018;21(11):1504-14.

Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR. Neuronal activity rapidly induces transcription of the CREB‐regulated microRNA‐132, in vivo. Hippocampus. 2010;20(4):492-8.

Landry CD, Kandel ER, Rajasethupathy P. New mechanisms in memory storage: piRNAs and epigenetics. Trends in neurosciences. 2013;36(9):535-42.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333-8.

Ivanov A, Mattei D, Radscheit K, Compagnion AC, Pett JP, Herzel H et al. Analyses of circRNA expression throughout the light-dark cycle reveal a strong regulation of Cdr1as, associated with light entrainment in the SCN. Int J Mol Sci. 2022;23(20):12347.

Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Progress Neurobiol. 2011;93(2):182-203.

Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77-94.

Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol. 1992;117(1):1-4.

Cavaillé J. Box C/D small nucleolar RNA genes and the Prader‐Willi syndrome: a complex interplay. Wiley Interdisciplinary Reviews: RNA. 2017;8(4):e1417.

Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48(4):1627-51.

Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature Biotechnol. 2012;30(5):453-9.

Grinman E, Nakahata Y, Avchalumov Y, Espadas I, Swarnkar S, Yasuda R, Puthanveettil SV. A cAMP/PKA-dependent synaptically targeted lncRNA mediates structural plasticity in hippocampal neurons by functionally interacting with the Spectrin/Ankyrin Network. bioRxiv. 2020;2020-09.

Raveendra BL, Swarnkar S, Avchalumov Y, Liu XA, Grinman E, Badal K et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proceedings National Academy Sci. 2018;115(43):E10197-205.

Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749.

Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nature Rev Genetics. 2014;15(1):7-21.

Hébert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics. 2010;19(20):3959-69.

Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proceedings National Academy Sci. 2015;112(22):6855-62.

Schlaudraff F, Gründemann J, Fauler M, Dragicevic E, Hardy J, Liss B. Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease. Neurobiol Aging. 2014;35(10):2302-15.

Rey F, Pandini C, Messa L, Launi R, Barzaghini B, Zangaglia R et al. α‐Synuclein antisense transcript SNCA‐AS1 regulates synapses‐and aging‐related genes suggesting its implication in Parkinson's disease. Aging Cell. 2021;20(12):e13504.

Wang S, Zhang X, Guo Y, Rong H, Liu T. The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget, 2017;8(15):24449.

Abrishamdar M, Jalali MS, Rashno M. MALAT1 lncRNA and Parkinson’s Disease: The role in the Pathophysiology and Significance for Diagnostic and Therapeutic Approaches. Molecular Neurobiol. 2022;59(9):5253-62.

Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proceedings National Academy Sci. 20089;105(17):6415-20.

Wang Y, Veremeyko T, Wong AH, El Fatimy R, Wei Z, Cai W et al. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer's disease. Neurobiol Aging. 2017;51:156-66.

Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med. 2008;14(7):723-30.

Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H et al. Long non-coding RNAs in pathogenesis of neurodegenerative diseases. Frontiers Cell Developmental Biol. 2021;9:719247.

Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacotherapy. 2021;135:111198.

Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Molecular Neurobiol. 2019;56:6156-67.

Cardo LF, Coto E, De Mena L, Ribacoba R, Moris G, Menendez M et al. Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol. 2013;260:1420-22.

Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2:1-8.

Tang J, Yu Y, Yang W. Long noncoding RNA and its contribution to autism spectrum disorders. CNS Neurosc Therapeutics. 2017;23(8):645-56.

Moreno-García L, López-Royo T, Calvo AC, Toivonen JM, De la Torre M, Moreno-Martínez L et al. Competing endogenous RNA networks as biomarkers in neurodegenerative diseases. Int J Molecular Sci. 2020;21(24):9582.

Smith P, Al Hashimi A, Girard J, Delay C, Hébert SS. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 2011;116(2):240-7.

Ferraldeschi M, Romano S, Giglio S, Romano C, Morena E, Mechelli R et al. Circulating hsa-miR-323b-3p in Huntington's disease: A pilot study. Frontiers Neurol. 2021;12:657973.

Gipson TA, Neueder A, Wexler NS, Bates GP, Housman D. Aberrantly spliced HTT, a new player in Huntington’s disease pathogenesis. RNA Biol. 2013;10(11):1647-52.

Chung DW, Rudnicki DD, Yu L, Margolis RL. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression. Human Molecular Genetics. 2011;20(17):3467-77.

Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastião AM et al. Downregulated glia interplay and increased miRNA-155 as promising markers to track ALS at an early stage. Molecular Neurobiol. 2018;55:4207-24

Bai Y, Su X, Piao L, Jin Z, Jin R. Involvement of astrocytes and microRNA dysregulation in neurodegenerative diseases: from pathogenesis to therapeutic potential. Frontiers Molecular Neurosci. 2021;14:556215.

Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Frontiers Biosci. 2015;20:37.

Yamazaki T, Hirose T. The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci. 2015;7(1):1-41.

Siegert S, Jinsoo S, Ester JK, Andrii R, Sukhee C, Wenyuan W et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nature Neurosci. 2015;18(7 ):1008-16.

Hill MJ, Donocik JG, Nuamah RA, Mein CA, Sainz-Fuertes R, Bray NJ. Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells. Schizophrenia Res. 2014;153(1-3):225-30.

Safa A, Badrlou E, Arsang-Jang S, Sayad A, Taheri M, Ghafouri-Fard S. Expression of NF-κB associated lncRNAs in schizophrenia. Scientific Reps. 2020;10(1):18105.

Barry G, Briggs JA, Vanichkina DP, Poth EM, Beveridge NJ, Ratnu VS et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Molecular Psychiatr. 2014;19(4):486-94.

Zakutansky PM, Feng Y. The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond. Cells. 2022;11(12):1949.

Zhou L, Zhu Y, Chen W, Tang Y. Emerging role of microRNAs in major depressive disorder and its implication on diagnosis and therapeutic response. J Affective Disord. 2021;286:80-6.

Shao QY, You F, Zhang YH, Hu LL, Liu WJ, Liu Y et al. CSF miR-16 expression and its association with miR-16 and serotonin transporter in the raphe of a rat model of depression. J Affective Disord. 2018;238:609-14.

Moya PR, Wendland JR, Salemme J, Fried RL, Murphy DL. miR-15a and miR-16 regulate serotonin transporter expression in human placental and rat brain raphe cells. Int J Neuropsychopharmacol. 2013;16(3):621-9.

Cui X, Niu W, Kong L, He M, Jiang K, Chen S et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomarkers Med. 2016;10(9):943-52.

Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Letters. 2015;589(3):319-25.

Ma L, Wei L, Wu F, Hu Z, Liu Z, Yuan W. Advances with microRNAs in Parkinson’s disease research. Drug Design Development Therapy. 2013:1103-13.

Riva P, Ratti A, Venturin M. The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Current Alzheimer Res. 2016;13(11):1219-31.

Yang Y, Li Y, Yang H, Guo J, Li N. Circulating microRNAs and long non-coding RNAs as potential diagnostic biomarkers for Parkinson’s disease. Frontiers in Molecular Neurosci. 2021;14:631553.

Taghizadeh E, Gheibihayat SM, Taheri F, Afshani SM, Farahani N, Saberi A. LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease. Neurological Sci. 2021;42:4007-15.

Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PloS One. 2014;9(5):e94839.

Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M. Long non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker. J Molecular Neurosci. 2019;69:351-9.

D’Ambra E, Capauto D, Morlando M. Exploring the regulatory role of circular RNAs in neurodegenerative disorders. Int J Molecular Sci. 2019;20(21):5477.

Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T et al. Serum microRNA profiles in children with autism. Molecular Autism. 2014;5(1):1-9.

Hoss AG, Lagomarsino VN, Frank S, Hadzi TC, Myers RH, Latourelle JC. Study of plasma‐derived miRNAs mimic differences in Huntington's disease brain. Movement Disorders. 2015;30(14):1961-4.

Toivonen JM, Manzano R, Oliván S, Zaragoza P, García-Redondo A, Osta R. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One. 2014;9(2):e89065.

Ma J, Shang S, Wang J, Zhang T, Nie F, Song X et al. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatr Res. 2018;265:70-6.

Li J, Zhu L, Guan F, Yan Z, Liu D, Han W et al. Relationship between schizophrenia and changes in the expression of the long non-coding RNAs Meg3, Miat, Neat1 and Neat2. J Psychiatr Res. 2018;106:22-30.

Xu YY, Xia QH, Xia QR, Zhang XL, Liang J. MicroRNA-based biomarkers in the diagnosis and monitoring of therapeutic response in patients with depression. Neuropsychiatr Dis Treatment. 2019:3583-97.

Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y et al. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018;32(1):512-28.

Taghizadeh E, Gheibihayat SM, Taheri F, Afshani SM, Farahani N, Saberi A. LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease. Neurological Sci. 2021;42:4007-15.

Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: from disease code to drug role. Acta Pharmaceutica Sinica B. 2021;11(2):340-54.

DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, Chen G, Shen T, Tran H, Nichols B, Zanardi TA. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Translational Med. 2017;9(374):eaag0481.

Schoch KM, Miller TM. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron. 2017;94(6):1056-70.

Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature Biotechnol. 2012;30(5):453-9.

Ke S, Yang Z, Yang F, Wang X, Tan J, Liao B. Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer's disease. Yonsei Med J. 2019;60(7):640-50.

Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biological Psychiatr. 2015;78(12):848-59.

Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proceedings National Academy Sci. 2005;102(16):5820-5.

Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435-42.

Leng X, Ma J, Liu Y, Shen S, Yu H, Zheng J et al. Mechanism of piR-DQ590027/MIR17HG regulating the permeability of glioma conditioned normal BBB. J Expe Clin Cancer Res. 2018;37(1):1-7.

Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA et al. Targeting huntingtin expression in patients with Huntington’s disease. N Eng J Med. 2019;380(24):2307-16.

Watson CN, Belli A, Di Pietro V. Small non-coding RNAs: new class of biomarkers and potential therapeutic targets in neurodegenerative disease. Frontiers Genetics. 2019;10:364.

Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol. 2021;189:114469.

Iacoangeli A, Bianchi R, Tiedge H. Regulatory RNAs in brain function and disorders. Brain research. 2010 Jun 18;1338:36-47.

Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Molecular Psychiatr. 2021;26(4):1060-74.

Kim YK. RNA therapy: current status and future potential. Chonnam Med J. 2020;56(2):87.

Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered. 2021;12(2):11675-98.

RNA interference (RNAi): The basics and essential publication. Available at: Accessed on 25 June, 2023.

Nie JH, Li TX, Zhang XQ, Liu J. Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Non-coding RNA. 2019;5(2):36.

Kim YK. RNA therapy: current status and future potential. Chonnam Med J. 2020;56(2):87.




How to Cite

Goel, R. (2023). Non-coding RNAs in the brain: new class of prospective biomarkers and therapeutics. International Journal of Research in Medical Sciences, 11(9), 3568–3581.



Review Articles