Chemical profiles and proximate analysis of n-hexane extract of Terminalia catappa kernel from Nigeria

Authors

  • Nimisoere P. Batubo Chemical profiles and proximate analysis of n-hexane extract of Terminalia catappa kernel from Nigeria
  • Ojeka Sunday Ogbu Department of Human Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Nigeria
  • Dapper Datonye Victor Department of Human Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Nigeria

DOI:

https://doi.org/10.18203/2320-6012.ijrms20233971

Keywords:

GC-MS, n-hexane extract, Phytochemical profile, Terminalia catappa, Proximate analysis, Terminalia catappate

Abstract

Background: Terminalia catappa is a traditionally consumed edible plant used for various health conditions. This study aimed to characterise the phytochemical profile, nutritional composition, and acute oral toxicity of the n-hexane extract of Terminalia catappa nuts.

Methods: Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to determine the phytochemical profile of the n-hexane extract of Terminalia catappa nuts. Proximate analysis was performed to evaluate the nutritional composition. Acute oral toxicity testing was carried out in Wistar rats as per OECD Guideline 425 to assess safety.

Results: The phytochemical analysis identified 19 bioactive compounds in the Terminalia catappa nut extract. The major components were cis-vaccenic acid (24.493%), propyleneglycol monoleate (23.783%), and mitotane (14.186%). Proximate analysis revealed the nuts to be rich sources of fat (56.71%) and protein (26.30%). The median lethal dose (LD50) of the n-hexane extract in rats was greater than 5000 mg/kg, indicating a high margin of safety.

Conclusions: This work provides valuable insights into the nutritional potential and safety profile of Terminalia catappa nuts. Phytochemical characterisation corroborates traditional uses, while the acute toxicity data establishes the relative safety of the n-hexane extract when consumed at high doses.

Metrics

Metrics Loading ...

References

Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, et al. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J Ethnobiol Ethnomedi. 2016;12:1-28.

Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The chemical composition and nutritional value of chia seeds-Current state of knowledge. Nutri. 2019;11(6):1242.

Badalamenti N, Maresca V, Di Napoli M, Bruno M, Basile A, Zanfardino A. Chemical composition and biological activities of Prangos ferulacea essential oils. Mole. 2022;27(21):7430.

Anand A, Divya N, Kotti P. An updated review of Terminalia catappa. Pharmacog revi. 2015;9(18):93.

Batubo NP. Determination of the dose and time dependent toxicological effects of hydroalcoholic extract of Terminalia catappakernel on the renal functions parameters of wister rats. Int J Res Med Sci. 2018;6(4):1129-33.

Cock IE. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacol. 2015;23(5):203-29.

Das G, Kim DY, Fan C, Gutiérrez-Grijalva EP, Heredia JB, Nissapatorn V, et al. Plants of the genus Terminalia: An insight on its biological potentials, pre-clinical and clinical studies. Front Pharmacol. 2020;11:561248.

Zhang XR, Kaunda JS, Zhu HT, Wang D, Yang CR, Zhang YJ. The genus Terminalia (Combretaceae): An ethnopharmacological, phytochemical and pharmacological review. Nat Prod Bioprospect. 2019;9(6):357-92.

Mallik J, Al FA, Kumar BR. A Comprehensive review on pharmacological activity of Terminalia Catappa (combretaceae)-An update. Asi J Pharmac Res Develop. 2013;1(2):65-70.

Ng S, Lasekan O, Muhammad KS, Hussain N, Sulaiman R. Physicochemical properties of Malaysian-grown tropical almond nuts (Terminalia catappa). J Food Sci Technol. 2015;52(10):6623-30.

Kalita S, Khandelwal S, Madan J, Pandya H, Sesikeran B, Krishnaswamy K. Almonds and cardiovascular health: a review. Nutri. 2018;10(4):468.

Oliveira JT, Vasconcelos IM, Bezerra LC, Silveira SB, Monteiro AC, Moreira RA. Composition and nutritional properties of seeds from Pachira aquatica Aubl, Sterculia striata St Hil et Naud and Terminalia catappa Linn. Food Chem. 2000;70(2):185-91.

Ezeokonkwo CA. Comparative effects of dry-and moist-heating treatments on the biochemical characteristics of Terminalia catappa L. seed. Food Sci Technol Int. 2007;13(2):165-71.

Biego GH, Konan AG, Douati TE, Kouadio LP. Physicochemical quality of kernels from Terminalia catappa L. and sensory evaluation of the concocted kernels. Sustain Agricul Res. 2012;1(526-2016-37823).

Monnet YT, Gbogouri A, Koffi PK, Kouamé LP. Chemical characterization of seeds and seed oils from mature Terminalia catappa fruits harvested in Côte d’Ivoire. Int J Biosci. 2012;10(1):110-24.

Boye A, Barku VY, Acheampong DO, Ofori EG. Abrus precatorius leaf extract reverses alloxan/nicotinamide-induced diabetes mellitus in rats through hormonal (insulin, GLP-1, and glucagon) and enzymatic (α-amylase/α-glucosidase) modulation. BioMed Res Int. 2021;2021:9920826.

Ezeokonkwo CA, Dodson WL. The potential of Terminalia catappa (tropical almond) seed as a source of dietary protein. J Food Quality. 2004;27(3):207-19.

Venkatalakshmi P, Vadivel V, Brindha P. Identification of flavonoids in different parts of Terminalia catappa L. Using LC-ESI-MS/MS and investigation of their anticancer effect in EAC cell line model. J Pharmac Sci Res. 2018;8(4):176.

Ajayi IA, Oderinde RA, Taiwo VO, Agbedana EO. Short-term toxicological evaluation of Terminalia catappa, Pentaclethra macrophylla and Calophyllum inophyllum seed oils in rats. Food Chemis. 2008;106(2):458-65.

Dos Santos IC, De Carvalho SH, Solleti JI, de La Salles WF, de La KT, Meneghetti SM. Studies of Terminalia catappa L. oil: characterization and biodiesel production. Biores Technol. 2008;99(14):6545-9.

Nwosu FO, Dosumu OO, Okocha JO. The potential of Terminalia catappa (Almond) and Hyphaene thebaica (Dum palm) fruits as raw materials for livestock feed. Afr J Biotechnol. 2008;7(24).

Nanos GD, Kazantzis I, Kefalas P, Petrakis C, Stavroulakis GG. Irrigation and harvest time affect almond kernel quality and composition. Sci Horticult. 2002;96(1-4):249-56.

Ammal RM, Bai GVS. Determination of bioactive constituents of heliotropium indicum leaf. J Medi Plants Stud. 2013;1:30-33.

Syed SU, Maher S, Taylor S. Quadrupole mass filter operation under the influence of magnetic field. J Mass Spectrom. 2013;48(12):1325-39.

Kim JY, Suh S, In MK, Paeng KJ, Chung BC. Simultaneous determination of cannabidiol, cannabinol, andgD 9-tetrahydrocannabinol in human hair by gas chromatography-mass spectrometryin human hair by gas chromatography-mass spectrometry. Arch Pharma Res. 2005;28(9):1086-91.

NIST. Inorganic Crystal Structure Database, NIST Standard Reference Database 1A, National Institute of Standards and Technology, Gaithersburg MD, 2023. Available at: https://data.nist.gov/od/id/mds2-2147. Accessed on 23 July 2023.

Yakubu Y, Lee SY, Shaari K. Chemical Profiles of Terminalia catappa LINN Nut and Terminalia subspathulata KING Fruit. Pertan J Trop Agricult Sci. 2021;44(4).

Latimer GW, Jr. (ed.). Official Methods of Analysis of AOAC International. G.W. Latimer, Jr.: Oxford University Press; 2023.

OECD guidelines. OECD Test Guidelines for Chemicals, 2023. Available at: https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm. Accessed on 23 July 2023.

Institute of Laboratory Animal Resources, Guide for the Care and Use of Laboratory Animals. Eighth ed. National Academies of Sciences, Engineering, and Medicine. Washington, DC: The National Academies Press; 1996.

Hernandez F, Cervera MI, Portolés T, Beltrán J, Pitarch E. The role of GC-MS/MS with triple quadrupole in pesticide residue analysis in food and the environment. Analy Meth. 2013;5(21):5875-94.

Dudics S, Langan D, Meka RR, Venkatesha SH, Berman BM, Che CT, et al. Natural products for the treatment of autoimmune arthritis: their mechanisms of action, targeted delivery, and interplay with the host microbiome. Int J Mol Sci. 2018;19(9):2508.

Jones AE, Divakaruni AS. Macrophage activation as an archetype of mitochondrial repurposing. Mole Asp Medi. 2020;71:100838.

Szczurek W, Szygula-Jurkiewicz B. Oxidative stress and inflammatory markers - the future of heart failure diagnostics? Kardi Torakochir Pol. 2015;12(2):145-9.

Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, et al. Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. Euro J Prevent Cardiol. 2020;27(5):494-510.

Hahner S, Fassnacht M. Mitotane for adrenocortical carcinoma treatment. Current opinion in investigational drugs (London, England: 2000). 2005;6(4):386-94.

Draing C, Traub S, Deininger S, Mang P, Möller HM, Manso M, et al. Polypropylene glycol is a selective binding inhibitor for LTA and other structurally related TLR2 agonists. Euro J Immunol. 2008;38(3):797-808.

Lau K, Swiney BS, Reeves N, Noguchi KK, Farber NB. Propylene glycol produces excessive apoptosis in the developing mouse brain, alone and in combination with phenobarbital. Pediat Res. 2012;71(1):54-62.

Djoussé L, Matsumoto C, Hanson NQ, Weir NL, Tsai MY, Gaziano JM. Plasma cis-vaccenic acid and risk of heart failure with antecedent coronary heart disease in male physicians. Clin Nutri. 2014;33(3):478-82.

Hamazaki K, Suzuki N, Kitamura KI, Hattori A, Nagasawa T, Itomura M, et al. Is vaccenic acid (18: 1t n-7) associated with an increased incidence of hip fracture? An explanation for the calcium paradox. Prostagl Leukotri Essent Fatty Acids. 2016;109:8-12.

Bertazza L, Barollo S, Mari ME, Faccio I, Zorzan M, Redaelli M, et al. Biological effects of EF24, a curcumin derivative, alone or combined with mitotane in adrenocortical tumor cell lines. Molec. 2019;24(12):2202.

Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902.

Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Design. 2012;80(3):434-9.

Patel BB, Di Iorio M, Chalifour LE. Metabolic response to chronic bisphenol A exposure in C57bl/6n mice. Toxicol Rep. 2014;1:522-32.

Dilika F, Bremner PD, Meyer JJ. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia. 2000;71(4):450-2.

Speert DP, Wannamaker LW, Gray ED, Clawson CC. Bactericidal effect of oleic acid on group A streptococci: mechanism of action. Infect Immu. 1979;26(3):1202-10.

Stenz L, François P, Fischer A, Huyghe A, Tangomo M, Hernandez D, et al. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS microbiol Letters. 2008;287(2):149-55.

Wei CC, Yen PL, Chang ST, Cheng PL, Lo YC, Liao VH. Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. PloS one. 2016;11(6):e0157195.

Gnoni GV, Natali F, Geelen MJH, Siculella L. Chapter 152 - Oleic acid as an inhibitor of fatty acid and cholesterol synthesis, in olives and olive oil in health and disease prevention. In: Preedy VR and Watson RR, Editors. Academic Press: San Diego; 2010:1365-1373.

Carrillo CM, Mdel C, Alonso-Torre S. Role of oleic acid in immune system; mechanism of action; a review. Nutr Hosp. 2012;27(4):978-90.

Al-Hassan JM, Hinek A, Renno WM, Wang Y, Liu YF, Guan R, et al. Potential mechanism of dermal wound treatment with preparations from the skin gel of Arabian Gulf catfish: a unique furan fatty acid (F6) and cholesta-3, 5-diene (S5) Recruit neutrophils and fibroblasts to promote wound healing. Frontiers in Pharmacology. 2020;11:899.

Craig M, Yarrarapu SNS, Dimri M. Biochemistry, Cholesterol. StatPearls: Treasure Island (FL); 2023.

Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, et al. Tetradecanoic acids with anti-virulence properties increase the pathogenicity of Pseudomonas aeruginosa in a murine cutaneous infection model. Front Cell Infect Microbiol. 2021;10:597517.

Dayrit FM, Buenafe OE, Chainani ET, De Vera IM. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy. J Agricult Food Chem. 2008;56(14):5765-9.

Barlina R, Dewandari KT, Mulyawanti I, Herawan T. Chapter 30 - Chemistry and composition of coconut oil and its biological activities, in multiple biological activities of unconventional seed oils. In: Mariod AA, Editor. Academic Press; 2022:383-395.

Matsue M, Mori Y, Nagase S, Sugiyama Y, Hirano R, Ogai K, et al. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant. 2019;28(12):1528-41.

Ghani NA, Channip AA, Chok Hwee Hwa P, Ja'afar F, Yasin HM, Usman A. Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes. Food Sci Nutrit. 2018;6(5):1298-306.

Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, et al. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biolog Chem. 2014;289(9):5510-7.

Downloads

Published

2023-12-28

How to Cite

Batubo, N. P., Ogbu, O. S., & Victor, D. D. (2023). Chemical profiles and proximate analysis of n-hexane extract of Terminalia catappa kernel from Nigeria. International Journal of Research in Medical Sciences, 12(1), 17–25. https://doi.org/10.18203/2320-6012.ijrms20233971

Issue

Section

Original Research Articles