The pathophysiology and therapeutic approaches in retinitis pigmentosa
DOI:
https://doi.org/10.18203/2320-6012.ijrms20241274Keywords:
Retinitis pigmentosa pathophysiology, Retinitis pigmentosa therapy, Retinitis pigmentosa epidemiologyAbstract
Retinitis Pigmentosa is a prevalent hereditary retinopathy that involves the gradual deterioration of vision cells and the disturbance of retinal pigment epithelium. The typical triad of retinitis pigmentosa is the pigmentation of the bone spicules, blood vessel constriction, and pallor of the optic nerve. The variety of clinical presentations is nyctalopia, tunnel vision, loss of colour discrimination, and in a later stage, complete loss of visual acuity. The immense genetic mutation accounts for the pathogenesis of RP. This diverse mutation makes treatment exceptionally challenging for RP. Until now, there is no specific therapy recommended for RP. Gene therapy is possibly the best option for RP, but further clinical trials are needed to provide customized therapy for each patient. Various therapeutic trials use pharmacologic agents such as neurotrophic, anti-apoptotic, antioxidant, anti-inflammatory, and anti-VEGF also use to postpone the progressivities of RP.
Metrics
References
O'Neal TB, Luther EE. Retinitis Pigmentosa. Treasure Island: StatPearls Publishing. 2021.
Dias MF, Joo K, Kemp JA. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res. 2018;63:107-31.
Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog Retin Eye Res. 2015; 48:62-81.
Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84(2):132-41.
Zhang Q. Retinitis Pigmentosa. Asia-Pacific J Ophthalmol. 2016;5(4):265-71.
Xu H, Chen M, Forrester J V. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28(5):348-68.
Verbakel SK, van Huet RAC, Boon CJF. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157-86.
Forsythe E, Beales PL. Bardet–Biedl syndrome. Eur J Hum Genet. 2013;21(1):8-13.
Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson R V. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr. 2015;4(2):139-63.
Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res. 2013;32:22-47.
Oishi M, Oishi A, Gotoh N. Comprehensive Molecular Diagnosis of a Large Cohort of Japanese Retinitis Pigmentosa and Usher Syndrome Patients by Next-Generation Sequencing. Investig Opthalmol Vis Sci. 2014;55(11):7369.
Athanasiou D, Aguilà M, Bevilacqua D, Novoselov SS, Parfitt DA, Cheetham ME. The cell stress machinery and retinal degeneration. FEBS Lett. 2013;587(13):2008-17.
Chan P, Stolz J, Kohl S, Chiang W-C, Lin JH. Endoplasmic reticulum stress in human photoreceptor diseases. Brain Res. 2016;1648:538-41.
Bainbridge JWB, Mehat MS, Sundaram V. Long-Term Effect of Gene Therapy on Leber's Congenital Amaurosis. N Engl J Med. 2015;372(20):1887-97.
Han J, Dinculescu A, Dai X, Du W, Smith WC, Pang J. Review: the history and role of naturally occurring mouse models with Pde6b mutations. Mol Vis. 2013;19:2579-89.
Tee JJL, Smith AJ, Hardcastle AJ, Michaelides M. RPGR- associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2016;100(8):1022-7.
Campochiaro PA, Mir TA. The mechanism of cone cell death in Retinitis Pigmentosa. Prog Retin Eye Res. 2018;62:24-37.
Peng B, Xiao J, Wang K, So K-F, Tipoe GL, Lin B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. J Neurosci. 2014;34(24):8139-50.
Kranz K, Paquet-Durand F, Weiler R, Janssen-Bienhold U, Dedek K. Testing for a Gap Junction-Mediated Bystander Effect in Retinitis Pigmentosa: Secondary Cone Death Is Not Altered by Deletion of Connexin 36 from Cones. PLoS One. 2013;8(2): e57163.
Byrne LC, Dalkara D, Luna G. Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. J Clin Invest. 2015;125(1):105-16.
Mei X, Chaffiol A, Kole C. The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress. Antioxid Redox Signal. 2016;24(16):909-23.
Thompson DA, Ali RR, Banin E. Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations From the Monaciano Symposium. Invest Ophthalmol Vis Sci. 2015;56(2):918-31.
Barnard AR, Groppe M, MacLaren RE. Gene Therapy for Choroideremia Using an Adeno-Associated Viral (AAV) Vector. Cold Spring Harb Perspect Med. 2015;5(3):a017293.
MacLaren RE, Groppe M, Barnard AR. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129-37.
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res. 2015;46:31-66.
Trifunovic D, Sahaboglu A, Kaur J. Neuroprotective Strategies for the Treatment of Inherited Photoreceptor Degeneration. Curr Mol Med. 2012; 12(5):598-612.
Cuenca N, Fernández-Sánchez L, Campello L. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014;43:17-75.
Kolomeyer AM, Zarbin MA. Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol. 2014;59(2):134-65.
Sahel JA, Roska B. Gene Therapy for Blindness. Annu Rev Neurosci. 2013;36(1):467-88.
Sahni J, Angi M, Irigoyen C. Therapeutic Challenges to Retinitis Pigmentosa: From Neuroprotection to Gene Therapy. Curr Genomics. 2011;12(4):276-84.
Lipinski DM, Barnard AR, Singh MS. CNTF Gene Therapy Confers Lifelong Neuroprotection in a Mouse Model of Human Retinitis Pigmentosa. Mol Ther. 2015;23(8):1308-19.
Drack AV, Dumitrescu AV, Bhattarai S. TUDCA Slows Retinal Degeneration in Two Different Mouse Models of Retinitis Pigmentosa and Prevents Obesity in Bardet-Biedl Syndrome Type 1 Mice. Investig Opthalmology Vis Sci. 2012;53(1):100.
Eigeldinger-Berthou S, Meier C, Zulliger R, Lecaudé S, Enzmann V, Sarra G-M. Rasagiline interferes with neurodegeneration in the PRPH2/RDS mouse. Retina. 2012;32(3):617-28.
Murase H, Tsuruma K, Shimazawa M, Hara H. TUDCA Promotes Phagocytosis by Retinal Pigment Epithelium via MerTK Activation. Investig Opthalmol Vis Sci. 2015;56(4):2511.
Mantopoulos D, Murakami Y, Comander J. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment. PLoS One. 2011;6(9):e24245.
Sánchez-Vallejo V, Benlloch-Navarro S, López-Pedrajas R, Romero FJ, Miranda M. Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. Pharmacol Res. 2015;99:276-88.
Scott PA, Kaplan HJ, McCall MA. Prenatal Exposure to Curcumin Protects Rod Photoreceptors in a Transgenic Pro23His Swine Model of Retinitis Pigmentosa. Transl Vis Sci Technol. 2015;4(5):5.
Wang K, Xiao J, Peng B. Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration. Sci Rep. 2015;4(1):7601.
Yoshida N, Ikeda Y, Notomi S. Clinical Evidence of Sustained Chronic Inflammatory Reaction in Retinitis Pigmentosa. Ophthalmology. 2013;120(1):100-5.
Ahn SJ, Kim KE, Woo SJ, Park KH. The Effect of an Intravitreal Dexamethasone Implant for Cystoid Macular Edema in Retinitis Pigmentosa: A Case Report and Literature Review. Ophthalmic Surgery, Lasers Imaging Retin. 2014;45(2):160-4.
Mansour AM, Sheheitli H, Kucukerdonmez C. Intravitreal dexamethasone implant in retinitis pigmentosa–related cystoid macular edema. Retina. 2018;38(2):416-23.
Moustafa G-A, Moschos MM. Intravitreal aflibercept (Eylea) injection for cystoid macular edema secondary to retinitis pigmentosa - a first case report and short review of the literature. BMC Ophthalmol. 2015;15(1):44.