The current treatment strategies for autoimmune diseases, including immunosuppressive drugs, biologics and emerging immunotherapies like CAR-T cell therapy
DOI:
https://doi.org/10.18203/2320-6012.ijrms20243746Keywords:
Autoimmune diseases, Adalimumab (Exemptia), Biosimilars, CAR-T cell therapy, Emerging therapiesAbstract
This review explores the evolving strategies in autoimmune disease (AID) management, focusing on the limitations of traditional therapies and the potential of emerging treatments. Traditional treatments, including corticosteroids, NSAIDs and DMARDs, are effective but often fail to restore immune tolerance and come with significant side effects. Emerging therapies, such as Janus kinase (JAK) inhibitors and sphingosine-1-phosphate (S1P) receptor modulators, offer targeted approaches by disrupting specific inflammatory pathways. Chimeric Antigen Receptor–T Cell (CAR-T) therapy, originally developed for cancer, is being investigated for AIDs, showing promise in targeting and eliminating autoreactive immune cells. Despite their benefits, these advanced therapies face challenges such as high costs and complex administration. This explored the role of biosimilars, like Exemptia, a biosimilar of Adalimumab, in addressing these challenges. By providing a cost-effective alternative without compromising efficacy or safety, biosimilars expand access to effective biologic therapies for AID management.
Metrics
References
Li DP, Han YX, He YS, Wen Y, Liu YC, Fu ZY, et al. A global assessment of incidence trends of autoimmune diseases from 1990 to 2019 and predicted changes to 2040. Autoimmun Rev. 2023; 103407.
Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023;19(8):509-24.
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. Dev Comp Immunol. 2023;144:104621.
Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2012;40(2):216-29.
Harroud A, Hafler DA. Common genetic factors among autoimmune diseases. Science. 2023;380(6644):485-90.
Martin SF. T lymphocyte-mediated immune responses to chemical haptens and metal ions: implications for allergic and autoimmune disease. Int Arch Allergy Immunol. 2004;134(3):186-98.
Zeytun A, Hassuneh M, Nagarkatti M, Nagarkatti PS. Fas-fas ligand–based interactions between tumor cells and tumor-specific cytotoxic T lymphocytes: A lethal two-way street. Blood. J Am Soc Hematol. 1997;90(5):1952-9.
Cassotta M, Pistollato F, Battino M. Rheumatoid arthritis research in the 21st century: Limitations of traditional models, new technologies and opportunities for a human biology-based approach. ALTEX-Alternatives to animal experimentation. 2020;37(2):223-42.
Giles JL, Polak OJ, Landon J. Disease modifying drugs for rheumatological diseases: a brief history of everything. Adv Protein Chem Struct Biol. 2020;120:313-48.
Kragballe K. Topical corticosteroids: mechanisms of action. Acta Derm Venereol Suppl (Stockh). 1989;151:7-10.
Akram M, Daniyal M, Sultana S, Owais A, Akhtar N, Zahid R, et al. Traditional and modern management strategies for rheumatoid arthritis. Clinica Chimica Acta. 2021;512:142-55.
Bodkhe R, Balakrishnan B, Taneja V. The role of microbiome in rheumatoid arthritis treatment. Ther Adv Musculoskelet Dis. 2019;11:1984463.
Chandrashekara S. The treatment strategies of autoimmune disease may need a different approach from conventional protocol: A review. Indian J Pharmacol. 2012;44(6):665.
Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus Kinase (JAK) inhibitors for inflammatory diseases: Miniperspective. J Med Chem. 2014;57(12):5023-38.
Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133-45.
Schwartz DM, Bonelli M, Gadina M, O’shea JJ. Type I/II cytokines, JAKs and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25-36.
Palasik BN, Wang H. Tofacitinib, the first oral janus kinase inhibitor approved for adult ulcerative colitis. J Pharm Pract. 2021;34(6):913-21.
Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME, et al. The mechanism of action of tofacitinib-an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(2):318-28.
Mogul A, Corsi K, McAuliffe L. Baricitinib: the second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Annals of Pharmacotherapy. 2019;53(9):947-53.
Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697-704.
Duggan S, Keam SJ. Upadacitinib: first approval. Drugs. 2019;79(16):1819-28.
Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z, et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. The Lancet. 2017;390(10093):457-68.
Cohen SB, Van Vollenhoven RF, Winthrop KL, Zerbini CAF, Tanaka Y, Bessette L, et al. Safety profile of upadacitinib in rheumatoid arthritis: integrated analysis from the SELECT phase III clinical programme. Ann Rheum Dis. 2021;80(3):304-11.
Bravo GÁ, Cedeño RR, Casadevall MP, Ramió-Torrentà L. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells. 2022;11(13):2058.
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol. 2016;2:6.
Subei AM, Cohen JA. Sphingosine 1-phosphate receptor modulators in multiple sclerosis. CNS Drugs. 2015;29(7):565-75.
Khatri B, Barkhof F, Comi G, Hartung HP, Kappos L, Montalban X, et al. Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS study. Lancet Neurol. 2011;10(6):520-9.
Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. The Lancet. 2018;391(10127):1263-73.
Comi G, Kappos L, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019;18(11):1009-20.
Cohen JA, Comi G, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019;18(11):1021-33.
Silvio D, Brian F, Stephen H, Igor J, Subrata G, AnnKatrin P, et al. P030 ozanimod efficacy, safety and histology in patients with moderate-to-severe ulcerative colitis during maintenance in the phase 3 true north study. Official journal of the American College of Gastroenterology| ACG. 2020;115:8.
Kappos L, Fox RJ, Burcklen M, Freedman MS, Havrdová EK, Hennessy B, et al. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: a randomized clinical trial. JAMA Neurol. 2021;78(5):558-67.
Paroder M, Le N, Pham HP, Thibodeaux SR. Important aspects of T‐cell collection by apheresis for manufacturing chimeric antigen receptor T cells. Adv Cell Gene Ther. 2020;3(1):e75.
Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10(5):267-76.
Ohno R, Nakamura A. Advancing autoimmune rheumatic disease treatment: CAR-T Cell therapies-evidence, safety and future directions. Semin Arthritis Rheum. 2024;67:1524-79.
Kansal R, Richardson N, Neeli I, Khawaja S, Chamberlain D, Ghani M, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med. 2019;11:482.
Mougiakakos D, Krönke G, Völkl S, Kretschmann S, Aigner M, Kharboutli S, et al. CD19-Targeted CAR T cells in refractory systemic lupus erythematosus. New England J Med. 2021;385(6):567-9.
Zhang B, Wang Y, Yuan Y, Sun J, Liu L, Huang D, et al. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis. 2021;80(2):176-84.
Whittington KB, Prislovsky A, Beaty J, Albritton L, Radic M, Rosloniec EF. CD8+ T Cells Expressing an HLA-DR1 Chimeric Antigen Receptor Target Autoimmune CD4+ T Cells in an Antigen-Specific Manner and Inhibit the Development of Autoimmune Arthritis. J Immunol. 2022;208(1):16-26.
Sheng L, Zhang Y, Song Q, Jiang X, Cao W, Li L, et al. Concurrent remission of lymphoma and Sjögren’s disease following anti-CD19 chimeric antigen receptor-T cell therapy for diffuse large B-cell lymphoma: a case report. Front Immunol. 2023;3:14.
Bergmann C, Müller F, Distler JHW, Györfi AH, Völkl S, Aigner M, et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis. 2023;82(8):1117-20.
Zhang L, Sosinowski T, Cox AR, Cepeda JR, Sekhar NS, Hartig SM, et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J Autoimmun. 2019;96:50-8.
Fishman S, Lewis MD, Siew LK, De Leenheer E, Kakabadse D, Davies J, et al. Adoptive Transfer of mRNA-Transfected T Cells Redirected against Diabetogenic CD8 T Cells Can Prevent Diabetes. Molecular Therapy. 2017;25(2):456-64.
Hoisnard L, Lebrun-Vignes B, Maury S, Mahevas M, El Karoui K, Roy L, et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci Rep. 2022;12(1):7140.
Fleischmann R, Genovese MC, Lin Y, St John G, van der Heijde D, Wang S, et al. Long-term safety of sarilumab in rheumatoid arthritis: an integrated analysis with up to 7 years’ follow-up. Rheumatology. 2020;59(2):292-302.
MERTENS M, SINGH JA. Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol. 2009;36(6):1118-25.
Lichtenstein GR, Feagan BG, Cohen RD, Salzberg BA, Safdi M, Popp Jr JW, et al. Infliximab for Crohn’s disease: more than 13 years of real-world experience. Inflamm Bowel Dis. 2018;24(3):490-501.
Moon W, Pestana L, Becker B, Loftus E V., Hanson KA, Bruining DH, et al. Efficacy and safety of certolizumab pegol for Crohn’s disease in clinical practice. Aliment Pharmacol Ther. 2015;42(4):428-40.
Garcia-Montoya L, Villota-Eraso C, Yusof MYM, Vital EM, Emery P. Lessons for rituximab therapy in patients with rheumatoid arthritis. Lancet Rheumatol. 2020;2(8):497-509.
https://www.exemptia.com/. Exemptia Prescribing Information.
Bandyopadhyay S, Mahajan M, Mehta T, Singh AK, Gupta AK, Parikh A, et al. Physicochemical and functional characterization of a biosimilar adalimumab ZRC-3197. Biosimilars. 2014;1:345.
Wong M, Ziring D, Korin Y, Desai S, Kim S, Lin J, et al. TNFα blockade in human diseases: Mechanisms and future directions. Clin Immunol. 2008;126(2):121-36.
Povoleri GAM, Lalnunhlimi S, Steel KJA, Agrawal S, O’Byrne AM, Ridley M, et al. Anti‐TNF treatment negatively regulates human CD4 + T‐cell activation and maturation in vitro, but does not confer an anergic or suppressive phenotype. Eur J Immunol. 2020;50(3):445-58.
Ríos-Navarro C, de Pablo C, Collado-Diaz V, Orden S, Blas-Garcia A, Martínez-Cuesta MÁ, et al. Differential effects of anti-TNF-α and anti-IL-12/23 agents on human leukocyte–endothelial cell interactions. Eur J Pharmacol. 2015;765:355-65.
Zamora-Atenza C, Diaz-Torne C, Geli C, Diaz-Lopez C, Ortiz M, Moya P, et al. Adalimumab regulates intracellular TNFα production in patients with rheumatoid arthritis. Arthritis Res Ther. 2014;16(4):153.
Chopra A, Mitra D, Agarwal R, Saraswat N, Chemburkar P, Sharma L. Real-life efficacy and safety of biosimilar adalimumab (ZRC-3197) in patients with plaque psoriasis: A tertiary care center experience. Indian Dermatol Online J. 2020;11(2):182.
Chandra A, Kanth R, Thareja S. Efficacy and safety of adalimumab biosimilar (exemptia) in moderate-to-severe steroid-refractory ulcerative colitis patients: real-life outcomes in resource-constrained setting at 24-weeks follow-up. Biologics. 2019;13:191-200.
Midha V, Mahajan R, Mehta V, Narang V, Singh A, Kaur K, et al. Efficacy and safety of the adalimumab biosimilar Exemptia as induction therapy in moderate-to-severe ulcerative colitis. Intest Res. 2018;16(1):83.
Kapoor S, Kaushik V V., Jain R, Rao VKR, Gharia M. Real‐life tolerability and effectiveness of adalimumab biosimilar in ankylosing spondylitis: the adalimumab biosimilar patient registry data. ACR Open Rheumatol. 2019;1(8):480-4.
Khandpur S, Sondhi P, Taneja N, Sharma P, Das D, Sharma A, et al. Evaluation of adalimumab biosimilar in treatment of psoriatic arthritis with concomitant moderate to severe chronic plaque psoriasis: An open-labeled, prospective, pilot case series. J Am Acad Dermatol. 2020;83(1):248-51.
Kamat N, Kedia S, Ghoshal UC, Nehra A, Makharia G, Sood A, et al. Effectiveness and safety of adalimumab biosimilar in inflammatory bowel disease: A multicenter study. Ind J Gastroenterol. 2019;38(1):44-54.