CAR-T cell therapy: breakthroughs, challenges and emerging horizons in cancer treatment
DOI:
https://doi.org/10.18203/2320-6012.ijrms20243750Keywords:
Chimeric antigen receptor, T cells, CAR-T cell, Relapsed or refractory leukaemia, Solid tumors, Cytokine release syndrome, Immune effector cell-associated neurotoxicity syndrome, Immunotherapy, Genetic engineeringAbstract
Chimeric Antigen Receptor (CAR)-T cell therapy has recently emerged as a breakthrough technology, offering a targeted approach in the treatment of cancers. It is a form of cancer immunotherapy which involves genetic modification of autogenic or allogenic T cells to express a chimeric receptor that can target a specific tumor antigen on the malignant cells. The receptors are chimeric because both antigen-binding and T cell activating functions are integrated into a single receptor. The greatest potential of CAR-T cell therapy lies in its power to use the patient’s immune system to fight cancer besides its durability. It also overcomes certain limitations such as limited effectiveness in resistant cancers, lack of precision in blood cancers etc. associated with the traditional cancer therapies like chemotherapy and radiation. CAR-T cell therapy has proven significantly efficacious in clinical trials for the treatment of patients with relapsed or refractory haematological malignancies and to a lesser extent in solid tumors too. A few of these CAR- T cells therapies have finally been approved by the FDA after decades of pre-clinical developments. CAR-T cell therapy though causes long term remissions in some cancer patients, yet few patients either relapse after the therapy or suffer severe toxic and adverse effects, leaving innovation space for further research. This review discusses the structure of CAR-T cells, principle of CAR-T cell therapy and its clinical applications, efficacy, safety, challenges and future directions for its use in cancer patients.
Metrics
References
Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, et al. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol. 2022; 29(5):3044-60.
Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A Small molecule innate immune modulator in cancer therapy. Front. Immunol. 2024;15:1395655
Park R, Eshrat F, Al-Jumayli M, Saeed A, Saeed A. Immuno-Oncotherapeutic Approaches in Advanced Hepatocellular Carcinoma. Vaccines. 2020; 8(3):447.
Sharma R, Suravarjhula L, Banerjee M, Kumar G, & Kumar, N. Chimeric antigen receptor T-cell therapy in cancer: A critical review. Current Drug Research Reviews Formerly. Current Drug Abuse Rev. 2023;15(3):241-61.
Patel U, Abernathy J, Savani BN, Oluwole O Sengsayadeth S, Bhagirathbhai D. CAR T cell therapy in solid tumors: A Review of Current Clinical Trials. 2021;3(1):24-31.
Mishra AK, Gupta A, Dagar G. CAR-T-Cell Therapy in Multiple Myeloma: B-cell maturation antigen (bcma) and beyond. Vaccines (Basel). 2023;11(11):1721.
Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-Cell Therapy in Hematological Malignancies. Int J Mol Sci. 2021;22(16):8996.
Dana H, Chalbatani GM, Jalali S , Mirzaei HR, Grupp SA , Suarez ER , Rapôso C, Webster TJ. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharmaceutica Sinica B. 2021;11(5):1129-47.
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int J Molec Sci. 2019;20(6):1283.
Tschumi BO, Dumauthioz N, Marti B, Zhang L, Schneider P, Mach JP, Donda A. CART cells are prone to Fas-and DR5-mediated cell death. J Immunother of Cancer. 2018; 6(1):71.
Huan T, Chen D, Liu G, Zhang H, Wang X, Wu Z, et al. Activation-induced cell death in CAR-T cell therapy. Human Cell. 2022;35(2):441-7.
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell Jr DJ, Guedan S. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. Frontiers in Immunol. 2020;11:1109.
Scarfò I, Maus M V. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immuno Cancer. 2017;5:1-8.
Zhang C, Liu J, Zhong JF et al. Engineering CAR-T cells. Biomark Res. 2017;5:22.
Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, et al. Recent advances in CAR-T cell engineering. J Hematol & Oncol.2020;13:1-19.
Ahmad U, Khan Z, Ualiyeva D, Amissah OB, Noor Z, Khan A, et al. Chimeric antigen receptor T cell structure, its manufacturing, and related toxicities; A comprehensive review. Advances in Cancer Biology-Metastasis. 2022;4:100035.
Sievers NM, Dörrie J, Schaft N. CARs: beyond T cells and T cell-derived signaling domains. Int J Mol Sci. 2020;21(10):3525.
Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res. 2017;5:22.
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107-26.
Baldo BA. Chimeric Fusion Proteins Used for Therapy: Indications, Mechanisms, and Safety. Drug Saf. 2015;38:455–79.
Li C, Tang Z, Hu Z, Wang Y, Yang X, Mo F, & Lu X. Natural single-domain antibody-nanobody: a novel concept in the antibody field. J Biomed Nanotechnol. 2018;14(1):1-19.
Zhu L, Yang X, Zhon D, Xie S, Shi W, Li Y, et al. Single‐domain antibody‐based TCR‐like CAR‐T: a potential cancer therapy. J Immunol Res. 2020;20(1):2454907.
Kennewick KT, Yamaguchi Y, Gibson J, Gerdts EA, Jeang B, Tilakawardane D, Murad JP, Chang WC, Wright SL, Thiel MS, Forman SJ. Non-signaling extracellular spacer regulates tumor antigen selectivity of CAR T cells. Molecular Therapy Oncol. 2024;32(2).
Fujiwara K, Tsunei A, Kusabuka H, Ogaki E, Tachibana M, Okada N. Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold. Cells. 2020;9(5):1182. Published 2020 May 9. doi:10.3390/cells9051182
Mazinani M, Rahbarizadeh F. CAR-T cell potency: from structural elements to vector backbone components. Biomark Res. 2022;10(1):70. Published 2022 Sep 19. doi:10.1186/s40364-022-00417-w
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, et al .CAR-T design: Elements and their synergistic function. EBioMedicine.2020; 58:102931
Smirnov S, Mateikovich P, Samochernykh K, Shlyakhto E. Recent advances on CAR-T signaling pave the way for prolonged persistence and new modalities in clinic. Frontiers in Immunology. 2024;15:1335-424.
Harrison AJ, Du X, Scheidt BV, Kershaw MH, Slaney CY. Enhancing co-stimulation of CAR T cells to improve treatment outcomes in solid cancers. Immuno ther Adv. 2021;1(1):16.
Subklewe M, Bergwelt-Baildon MV, Humpe A. Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus Med Hemother. 2019;46(1):15–24.
Styczyński J. A brief history of CAR-T cells: from laboratory to the bedside. Acta Haematologica Polonica. 2020;51(1):2-5.
Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert opinion on biological therapy. 2015; 15(8):1145-1154.
Chen YJ, Abila B, Mostafa Kamel Y. CAR-T: what is next. Cancers. 2023;15(3):663.
Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K, Butler MO, Minden MD, Hirano N. A novel chimeric antigen receptor containing a JAK-STAT signalling domain mediates superior antitumor effects. Nat Med. 2018;24(3):352–9.
Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematology & Oncol .2018;11:1-9.
Bachmann M. The UniCAR system: a modular CAR T cell approach to improve the safety of CAR T cells. Immunology letters. 2019;211:13-22.
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024-8.
Goel R. CRISPR/Cas9-mediated genome editing: from basic research to gene therapy. Int J Res Med Sci. 2024;12(6):2200.
CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers. Source: National Cancer Institute, USA. Available at: https://www.cancer. gov/about-cancer/treatment/research/car-t-cells. Accessed on 3 June 2024.
Cappell KM, Sherry RM, Yang JC, Goff SL, Vanasse DA, McIntyre L, Rosenberg SA, Kochenderfer JN. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. Journal of Clinical Oncology. 2020;38(32):3805-15.
Chavez JC, Yassine F, Sandoval-Sus J, Kharfan-Dabaja MA. Anti-CD19 chimeric antigen receptor T-cell therapy in B-cell lymphomas: current status and future directions. Int J Hematol Oncol. 2021;10(2):33.
Lu P, Hill HA, Navsaria L J, Wang ML. CAR-T and other adoptive cell therapies for B cell malignancies. Journal of the National Cancer Center. 2021;1(3):88-96.
Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, et al. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clinical Cancer Research. 2019;25(6):1702-8.
Elmacken M, Peredo-Pinto, Wang C, Xu Z, Tegenge M, Jaigirdar AA, et al. FDA Approval Summary: Lisocabtagene Maraleucel for Second-Line Treatment of Large B-Cell Lymphoma. Clinical Cancer Research .2024; 30(11):2309-16.
O'Leary MC, Lu X, Huang Y, Lin X, Mahmood I, Przepiorka D. Pazdur R. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clinical Cancer Research, 2019; 25(4):1142-6.
Jain MD, Bachmeier CA, Phuoc VH, Chavez JC Axicabtagene ciloleucel (KTE-C19), an anti-CD19 CAR T therapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin’s lymphoma. Therapeutics and Clinical Risk Management.2018;14:1007–17.
Viardot A, Wais V, Sala E, Koerper S. Chimeric antigen receptor (CAR) T-cell therapy as a treatment option for patients with B-cell lymphomas: perspectives on the therapeutic potential of Axicabtagene ciloleucel. Cancer Management and Research. 2019;2:2393-404.
Hirayama A, Chou C, Maloney DG, Marcondes MQ, Turtle CJ. A Phase Ib Open-Label Study Evaluating the Safety and Efficacy of NKTR-255 in Combination with CD19-Directed CAR-T Cell Therapy in Patients with Relapsed/Refractory (R/R) Large B-Cell Lymphoma (LBCL). Blood. 2022;140(1):12747-8.
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T‐cell therapy in hematologic malignancies: Successes, challenges, and opportunities. European Journal of Haematology. 2024 Feb;112(2):197-210.
Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. The Lancet. 2020;396(10254):839-52.
Anderson MK, Torosyan A, Halford Z. Brexucabtagene Autoleucel: A novel chimeric antigen receptor t-cell therapy for the treatment of mantle cell lymphoma. Ann Pharmaco.2022;56(5):609-19.
CD19-Directed CAR T Improves OS in B-Cell Acute Lymphoblastic Leukemia. Available at: https://www.cancernetwork.com/view/cd19-direct-car-t-improves-os-in-b-cell-acute-lymphoblastic-leukemia. Accessed on 3 June 2024.
Bouchkouj N, Lin X, Wang X, Przepiorka D, Xu Z, Purohit-Sheth,T, Theoret M. FDA approval summary: brexucabtagene autoleucel for treatment of adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. The Oncol. 2022;27(10):892-9.
Benjamin Holmes DVM. CAR T-cell therapy indications grow significantly in 2021. Targ Ther Oncol. 2021;10(18):10.
Wittibschlager V, Bacher U, Seipel K, Porret N, Wiedemann G, Haslebacher C, et al. CAR T-Cell persistence correlates with improved outcome in patients with B-Cell Lymphoma. Int J Mole Sci. 2023;24(6):5688.
Blüm P, Kayser S. Chimeric Antigen Receptor (CAR) T-Cell therapy in hematologic malignancies: clinical implications and limitations. Cancers. 2024;16(8):1599.
Ramos CA, Rouce R, Robertson C S, Reyna A, Narala N, Vyas G, et al. In vivo fate and activity of second-versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Molecular Ther. 2018; 26(12): 2727-37.
Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020;34(4):985-1005.
Abramson HN. B-cell maturation antigen (BCMA) as a target for new drug development in relapsed and/or refractory multiple myeloma. Int J Mol Sci.2020;21(15):5192.
Abecma (Idecabtagene Vicleucel) First-in-Class BCMA-Directed CAR T-Cell Therapy Approved for Relapsed or Refractory Multiple Myeloma. Available at: https://www.ahdbonline.com/issues/2021/december-2021-twelfth-annual-payers-guide/abecma-idecabtagene-vicleucel-first-in-class-bcma-directed-car-t-cell-therapy. Accessed on 3 June 2024.
Martin T, Usmani SZ, Berdeja JG, Jakubowiak A, Agha M, Cohen AD, et al. Updated results from CARTITUDE-1: phase 1b/2Study of ciltacabtagene autoleucel, a b-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in patients with relapsed/refractory multiple myeloma. Blood. 2021;138:549.
FDA approves ciltacabtagene autoleucel for relapsed or refractory multiple myeloma. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ciltacabtagene-autoleucel-relapsed-or-refractory-multiple-myeloma. Accessed on 3 June 2024.
Lionel A, Kankeu F. Olivia S, Reona S, Elizabeth LS, Saad SK. CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities. Molecular Ther Oncol. 2022;25:69-77.
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Imm. 2024;15:1431211.
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, et al. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell & Bioscience. 2024;14(1):113.
Wilczyński J, Paradowska E, Wilczyński M. High-grade serous ovarian cancer—a risk factor puzzle and screening fugitive. Biomedicines. 2024;12(1);229.
Dorff TB, Blanchard MS., Adkins LN, et al. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2024;30:1636-44.
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma. Intern J Oncol. 2024; 64(4):1-23.
Bughda R, Dimou P, D’Souza RR, Klampatsa A. Fibroblast activation protein (FAP)-targeted CAR-T cells: launching an attack on tumor stroma. Immun Targets and Therapy. 2021;3: 313-23.
Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova M., Suksatan W et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Research & Therapy. 2022;13(1):40.
Yoon WS, Chung DS. Advanced t and natural killer cell therapy for glioblastoma. J Kor Neurosurg Soc. 2023;66(4):356-81.
Xie Y, Hu Y, Zhou N, Yao C, Wu L, Liu L, Chen F. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer letters. 2020;491:121-31.
Ho-Yen CM, Jones JL, Kermorgant, S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res. 2015;17:1-11.
Xie H. The progress of optional targets and approaches to enhance efficacy of CAR-T for pancreatic ductal adenocarcinoma. In Third International Conference on Biological Engineering and Medical Science. 2024;12924:367-76.
Ma HY, Das J, Prendergast C, De Jong D, Braumuller B, Paily J, et al. Advances in CAR T cell therapy for non-small cell lung cancer. Curr Issues in Mol Bio. 2023;45(11):9019-38.
Khorasani AB, Sanaei MJ, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. Int Immunopharmacol.2021;101:108260.
Stern LA, Jonsson VD, Priceman SJ. CAR T cell therapy progress and challenges for solid tumors. Tumor Microenvironment. 2020;4:297-326.
Foeng J, Comerford I, McColl SR. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep Med. 2022;3(3):100543.
Li W, Pan X, Chen L, Cui H, Mo S, Pan, et al. Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy. Front Immunol. 2023;14:1186383.
Liu Z, Zhou Z, Dang Q et al. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics. 2022;12(14):6273-90.
Liu M, Wang X, Li W, Yu X, Flores-Villanueva P, Xu-Monette ZY, et al. Targeting PD-L1 in non-small cell lung cancer using CAR T cells. Oncogenesis. 2020;9(8):72.
Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 2017;8(52):90521.
Wang L, Zhang L, Zhang Z, Wu P, Zhang Y, Chen X. Advances in targeting tumor microenvironment for immunotherapy. Front. Immunol. 2024;15:1472772.
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell Jr DJ, Guedan S. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. Front Immunol. 2020;11:1109.
Vlodavsky I, Kayal Y, Hilwi M., Soboh S, Sanderson RD, Ilan N. Heparanase—A single protein with multiple enzymatic and nonenzymatic functions. Prot Res. 2023;1(3):6.
Yong CS, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH. CAR T‐cell therapy of solid tumors. Immunol and Cell Biol. 2017;95(4): 356-63.
Wang Y, Wang J, Yang X, Yang J, Lu P, Zhao L, et al. Chemokine receptor CCR2b enhanced anti-tumor function of chimeric antigen receptor T cells targeting mesothelin in a non-small-cell lung carcinoma model. Front Immunol. 2021;12:628-906.
Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sciences. 2023;1:223-87.
Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130-44.
Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Molecul Immunol. 2021;18(5):1085-95.
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Experimental Hematol Oncol. 2024;13(1):96
Wei W, Chen ZN, Wang K. CRISPR/Cas9: A powerful strategy to improve CAR-T cell persistence. International Journal of Molecular Sciences. 2023;24(15):12317.
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T cell genetic engineering strategies to overcome hurdles in solid tumors treatment. Frontiers in Immunology. 2022;13:830292.
Sterner RC, Sterner RM. EGFRVIII and EGFR targeted chimeric antigen receptor T cell therapy in glioblastoma. Front Oncol. 2024;14.
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Chimeric antigen receptor design and efficacy in ovarian cancer treatment. Int J Mol Sci. 2021;22(7):3495.
Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH, et al. Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res. 2013;1(1):43-53.
Comoli P, Chabannon C, Koehl U, Lanza F, Urbano-Ispizua A, Hudecek M, et al. Development of adaptive immune effector therapies in solid tumors. Annals of Oncology. 2019;30(11):1740-50.
Karnik I, Her Z, Neo SH, Liu WN, Chen Q. Emerging preclinical applications of humanized mouse models in the discovery and validation of novel Immunotherapeutics and their mechanisms of action for improved cancer treatment. Pharmaceutics. 2023;15(6):1600.
Fedorov VD, Themeli M, Sadelain M. PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Science Translat Med. 2013;5(2):172.
Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nature Rev Clin Oncol. 2013;10(5):267-76.
Hartmann J, Schüßler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO molecular medicine. 2017;9(9):1183-97.
Giavridis T, Stegen SJ, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nature Med. 2018;24(6):731-8.
Yoo JW. Management of adverse events in young adults and children with acute B-cell lymphoblastic leukemia receiving anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. Blood research. 2023;58(1):20-8.
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New England J Med. 2017;377(26):2531-44.
Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood, The J Am Soc Hematol. 2023;141(20):2430-42.
Moghanloo E, Mollanoori H, Talebi M, Pashangzadeh S, Faraji F, Hadjilooei F, et al. Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Transl Oncol. 2021;14(6):101070.
Hartmann J, Schüßler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183-97.
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood, J Am Society Hematol. 2014;124(2):188-95.
Gonzalez Castro LN, Dietrich J. Evaluation and management of chimeric antigen receptor (CAR) T-cell-associated neurotoxicity. Neuro-Oncol Practice. 2021;8(3):259-65.
CAR T Cell. Available at: https://en.wikipedia.org/wiki/CAR_T_cell. Accessed on 4 July 2024.
Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol & Oncol. 2019;12:1-9.