Role of adipose tissue in people with obesity and its relationship with the appearance of metabolic diseases

Authors

  • Steven M. Suárez Velastegui School of Medicine, UDLA University, Quito, Ecuador
  • Carmen P. Montes Castro Department of Medicine, Armed Forces Hospital, Pastaza, Ecuador
  • Myrna A. Córdova Perugachi Ministry of Public Health, Quito, Ecuador
  • Martín I. Rodríguez Ministry of Public Health, Quito, Ecuador
  • Gisella G. Riofrio Department of Medicine, Armed Forces Specialty Hospital, Quito, Ecuador
  • Cristhian A. Coral IPS ARTMEDICA, Medellín, Colombia
  • Carlos A. Chango School of Medicine, UDLA University, Quito, Ecuador
  • Lizeth A. Navas Balarezo Intensive Care Unit Department, Ecuadorian Institute of Social Security, Ambat, Ecuador

DOI:

https://doi.org/10.18203/2320-6012.ijrms20250281

Keywords:

Adipose tissue dysfunction, Endoplasmic reticulum stress, Obesity, Unfolded protein response

Abstract

The alteration of adipose tissue plays a fundamental role in the appearance of chronic inflammation diseases; insulin resistance, lipid deposition in obese patients. In recent years it has been shown that under the stimulation of adipocytes in stressful situations, their endoplasmic reticulum generates a response that over activates the inflammatory response of adipose tissue and interferes with normal mentalism, generating the secretion of adipokines, affecting the thermogenic pathways of the tissue. adipose, which causes the manifestation of metabolic syndrome. This article summarizes the relationship between adipocyte endoplasmic reticulum and adipose tissue dysfunction in obese patients.

Metrics

Metrics Loading ...

References

Singh R, Barrios A, Dirakvand G. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells. 2021;10(11):3030. DOI: https://doi.org/10.3390/cells10113030

Alcalá M, Calderon-Dominguez M, Serra D. Mechanisms of impaired brown adipose tissue recruitment in obesity. Front Physiol. 2019;2:10. DOI: https://doi.org/10.3389/fphys.2019.00094

Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: trends in obesity rates and obesity-related complications. Diabetes Obes Metab. 2021;23(1):3–16. DOI: https://doi.org/10.1111/dom.14290

Tremmel M, Gerdtham U, Nilsson P. Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14(4):435. DOI: https://doi.org/10.3390/ijerph14040435

Bahia L, Schaan CW, Sparrenberger K. Overview of meta-analysis on prevention and treatment of childhood obesity. J Pediatr. 2019;95(4):385–400. DOI: https://doi.org/10.1016/j.jped.2018.07.009

Ferro-Novick S, Reggiori F, Brodsky JL. ER-Phagy, ER Homeostasis and ER quality control: implications for disease. Trends Biochem Sci. 2021;46(8):630–9. DOI: https://doi.org/10.1016/j.tibs.2020.12.013

Scherer PE. The many secret lives of adipocytes: implications for diabetes. Diabetologia. 2019;62(2):223–32. DOI: https://doi.org/10.1007/s00125-018-4777-x

Freyre CA, Rauher PC, Ejsing CS. MIGA2 links mitochondria, the ER and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol Cell. 2019;76(5):811–25. DOI: https://doi.org/10.1016/j.molcel.2019.09.011

Xu S, Xi J, Wu T, Wang Z. The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review. Int J Gen Med. 2023;16:4405–18. DOI: https://doi.org/10.2147/IJGM.S428482

Jiang Y, Guo JQ, Wu Y, Zheng P, Wang SF, Yang MC, et al. Excessive or sustained endoplasmic reticulum stress: one of the culprits of adipocyte dysfunction in obesity. Ther Adv Endocrinol Metab. 2024:7:15. DOI: https://doi.org/10.1177/20420188241282707

Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets, signal transduction and targeted therapy. Springer Nature; 2023;8:56.

Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Front Immunol. 202415:56-9.

Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients. Multidisciplinary Digital Publishing Institute. 2023;15:67. DOI: https://doi.org/10.3390/nu15245082

Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacoth. 2024;1;177:117122 . DOI: https://doi.org/10.1016/j.biopha.2024.117122

Wu L, Zhang L, Li B. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol. 2018;9:9. DOI: https://doi.org/10.3389/fphys.2018.00122

Huang Y, Li Y, Liu Q. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochem Biophys Res Commun. 2020;523(3):787–94. DOI: https://doi.org/10.1016/j.bbrc.2019.12.111

Ajoolabady A, Liu S, Klionsky DJ, Lip GY, Tuomilehto J, Kavalakatt S, et al. ER stress in obesity pathogenesis and management. Trends in pharmacological sciences. 2022;43(2):97-109. DOI: https://doi.org/10.1016/j.tips.2021.11.011

Joud B, Hend AJ, Sara A, Layla AM. Impact of Obesity-Related Endoplasmic Reticulum Stress on Cancer and Associated Molecular Targets. Biomedicines. 2024;3(12):45. DOI: https://doi.org/10.3390/biomedicines12040793

Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Molecular Metabol. 2021;47:101169. DOI: https://doi.org/10.1016/j.molmet.2021.101169

Mohan S, Brown L, Ayyappan P. Endoplasmic reticulum stress: a master regulator of metabolic syndrome. European J Pharmacol. 2019;860:172553. DOI: https://doi.org/10.1016/j.ejphar.2019.172553

Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Molecular Medicine. 2024;30(1):40. DOI: https://doi.org/10.1186/s10020-024-00808-9

MJ Pagliassotti PYK,AE,CS,CG. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism. 2016;65(9):398. DOI: https://doi.org/10.1016/j.metabol.2016.05.002

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nature reviews Molecular cell biology. 2020;21(8):421-38. DOI: https://doi.org/10.1038/s41580-020-0250-z

Cortés-Ginez MD, Baiza-Gutman LA, Manuel-Apolinar L, Cruz-López M, Ibáñez-Hernández MÁ, Díaz-Flores M. Activation of endoplasmic reticulum stress sensors by metabolic disease-associated diets and COVID-19. Revista Medica del Instituto Mexicano del Seguro Social. 2022;60(2):211-23.

Farese RV, Walther TC. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. Cold Spring Harbor Perspectives in Biology. 2023;15(5):41246. DOI: https://doi.org/10.1101/cshperspect.a041246

Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endoc and Meta Dis. 2014;15:277-87. DOI: https://doi.org/10.1007/s11154-014-9301-0

Ringseis R, Eder K, Mooren FC, Krüger K. Metabolic signals and innate immune activation in obesity and exercise. Exercise Immunol Rev. 2015;21:579-612.

Freitas IN, da Silva Jr JA, Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, et al. Insights by which TUDCA is a potential therapy against adiposity. Frontiers in endocrinol. 2023;14:1090039. DOI: https://doi.org/10.3389/fendo.2023.1090039

Latif MU, Schmidt GE, Mercan S, Rahman R, Gibhardt CS, Stejerean-Todoran I, et al. NFATc1 signaling drives chronic ER stress responses to promote NAFLD progression. Gut. 2022;71(12):2561-73. DOI: https://doi.org/10.1136/gutjnl-2021-325013

Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biol and Med. 2022;184:114-34. DOI: https://doi.org/10.1016/j.freeradbiomed.2022.03.019

Gaete González SV. Activación del sensor IRE1α de la Respuesta a proteínas mal plegadas (“Unfolded protein response”, UPR) en células dendríticas intratumorales.

Wang Y, Bao YL, Wang YL, Wu Z, Chai H, Wei CX. Z-VAD-FMK ameliorates injury of cardiomyocytes induced by adriamycin in dilated cardiomyopathy rats via the PERK/eIF2α and mitochondrial signaling pathway. Lat Am J Pharm. 2017;36:5-11.

Pérez-Martínez P, Ros E, Pedro-Botet J, Civeira F, Pascual V, Garcés C, et al. Functional foods and nutraceuticals in the treatment of hypercholesterolemia: Statement of the Spanish Society of Arteriosclerosis 2023. Clínica e Investigación en Arteriosclerosis (English Edition). 2023;35(5):248-61. DOI: https://doi.org/10.1016/j.artere.2023.09.003

Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduc and Targ Ther. 2023;8(1):352. DOI: https://doi.org/10.1038/s41392-023-01570-w

Downloads

Published

2025-01-30

How to Cite

Velastegui, S. M. S., Castro, C. P. M., Perugachi, M. A. C., Rodríguez, M. I., Riofrio, G. G., Coral, C. A., Chango, C. A., & Balarezo, L. A. N. (2025). Role of adipose tissue in people with obesity and its relationship with the appearance of metabolic diseases. International Journal of Research in Medical Sciences, 13(2), 911–916. https://doi.org/10.18203/2320-6012.ijrms20250281

Issue

Section

Review Articles