Antidiabetic effects of n-hexane extract of terminalia catappa nuts in Wistar rats induced with hyperlipidaemia and hyperglycaemia

Authors

  • Nimisoere P. Batubo Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Rivers State University, Port Harcourt, Nigeria
  • Edith Reuben Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Rivers State University, Port Harcourt, Nigeria
  • Boma H. Opusunju Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Rivers State University, Port Harcourt, Nigeria
  • Ojeka Sunday Ogbu Department of Human Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Nigeria
  • Dapper Datonye Victor Department of Human Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Nigeria

DOI:

https://doi.org/10.18203/2320-6012.ijrms20250659

Keywords:

Terminalia catappa nut, Wistar albino rats, Diabetes, Hyperlipidaemia, Hyperglycaemia, Pancreatic histology, Cardiometabolic disease, Glucose homeostasis

Abstract

Background: Hyperlipidaemia and hyperglycaemia significantly impair pancreatic function and glucose metabolism, necessitating therapeutic interventions. This study investigated the effects of n-hexane extract of Terminalia catappa nut (TCN) extract on glucose homeostasis and pancreatic histology in hyperlipidaemic and hyperglycaemic Wistar rats.

Methods: Wistar rats were divided into six groups: negative control, positive control, standard drug control (atorvastatin and metformin), and TCN-treated groups (200, 400, and 800 mg/kg). Fasting blood glucose (FBG), insulin levels, and HOMA indices were measured, and pancreatic tissue was histologically examined. Data were analysed using one-way ANOVA followed by Tukey's post-hoc test for multiple comparisons, with significance set at p<0.05.

Results: TCN treatment produced dose-dependent improvements in glucose metabolism. The 800 mg/kg TCN group exhibited significant reductions in FBG (4.56±0.03 mmol/l) and insulin resistance (HOMA2-IR: 1.30±0.10) and near-normal insulin levels (11.85±1.20 μU/ml), comparable to the negative control. Beta-cell function (HOMA2%B) improved progressively with TCN, with the 800 mg/kg dose achieving values similar to the negative control (118±4.00). Histologically, the negative control group displayed intact islets of Langerhans and organized acinar cells. Conversely, the positive control group showed severe necrosis, inflammation, and disrupted islets. TCN treatment demonstrated dose-dependent histological recovery, with the 800 mg/kg group achieving near-complete restoration of pancreatic architecture.

Conclusions: TCN extract improves glucose homeostasis, enhances beta-cell function, and restores pancreatic integrity in hyperlipidaemic and hyperglycaemic conditions. These findings highlight the therapeutic potential of TCN as an adjunct for managing metabolic disorders.

Metrics

Metrics Loading ...

References

Chakraborty S, Verma A, Garg R, Singh J, Verma H. Cardiometabolic Risk Factors Associated With Type 2 Diabetes Mellitus: A Mechanistic Insight. Clin Med Insights Endocrinol Diabet. 2023;16:11795514231220780. DOI: https://doi.org/10.1177/11795514231220780

Martin-Timon I, Sevillano-Collantes C, Segura-Galindo A, Del Canizo-Gomez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diab. 2014;5(4):444-70. DOI: https://doi.org/10.4239/wjd.v5.i4.444

Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34(5):575-84. DOI: https://doi.org/10.1016/j.cjca.2017.12.005

Gonzalez P, Lozano P, Ros G, Solano F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int J Mol Sci. 2023;24(11):9352. DOI: https://doi.org/10.3390/ijms24119352

Gorgani F, Sharafkhah M, Masoudi S, Poustchi H, Delavari A, Sadjadi A, et al. The contribution of metabolic risk factors to cardiovascular mortality in Golestan cohort study: Population attributable fraction estimation. Int J Cardiol Cardiovasc Risk Prev. 2024;21:200279. DOI: https://doi.org/10.1016/j.ijcrp.2024.200279

Das P, Ingole N. Lipoproteins and Their Effects on the Cardiovascular System. Cureus. 2023;15(11):e48865. DOI: https://doi.org/10.7759/cureus.48865

Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886-99. DOI: https://doi.org/10.1007/s00125-015-3525-8

Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35(3):414-28. DOI: https://doi.org/10.1016/j.cmet.2023.02.003

Obsa MS, Ataro G, Awoke N, Jemal B, Tilahun T, Ayalew N, et al. Determinants of Dyslipidemia in Africa: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2021;8:778891. DOI: https://doi.org/10.3389/fcvm.2021.778891

Ekpor E, Addo-Mensah D, Akyirem S. Prevalence of dyslipidemia among persons with type 2 diabetes in Africa: a systematic review and meta-analysis. Ann Med Surg (Lond). 2024;86(6):3468-77. DOI: https://doi.org/10.1097/MS9.0000000000002122

Pastakia SD, Pekny CR, Manyara SM, Fischer L. Diabetes in sub-Saharan Africa-from policy to practice to progress: targeting the existing gaps for future care for diabetes. Diabetes Metab Syndr Obes. 2017;10:247-63. DOI: https://doi.org/10.2147/DMSO.S126314

Adeloye D, Ige JO, Aderemi AV, Adeleye N, Amoo EO, Auta A, et al. Estimating the prevalence, hospitalisation and mortality from type 2 diabetes mellitus in Nigeria: a systematic review and meta-analysis. BMJ Open. 2017;7(5):e015424. DOI: https://doi.org/10.1136/bmjopen-2016-015424

Uloko AE, Musa BM, Ramalan MA, Gezawa ID, Puepet FH, Uloko AT, et al. Prevalence and Risk Factors for Diabetes Mellitus in Nigeria: A Systematic Review and Meta-Analysis. Diabetes Ther. 2018;9(3):1307-16. DOI: https://doi.org/10.1007/s13300-018-0441-1

Denicolo S, Perco P, Thoni S, Mayer G. Non-adherence to antidiabetic and cardiovascular drugs in type 2 diabetes mellitus and its association with renal and cardiovascular outcomes: A narrative review. J Diabetes Complications. 2021;35(7):107931. DOI: https://doi.org/10.1016/j.jdiacomp.2021.107931

Kim JH, Kismali G, Gupta SC. Natural Products for the Prevention and Treatment of Chronic Inflammatory Diseases: Integrating Traditional Medicine into Modern Chronic Diseases Care. Evid Based Complement Alternat Med. 2018;9837863. DOI: https://doi.org/10.1155/2018/9837863

Diederich M. Natural products target the hallmarks of chronic diseases. Biochem Pharmacol. 2020;173:113828. DOI: https://doi.org/10.1016/j.bcp.2020.113828

Batubo NP, Ogbu OS, Victor DD. Chemical profiles and proximate analysis of n-hexane extract of Terminalia catappa kernel from Nigeria. Int J Res Med Sci. 2023;12(1):17-25. DOI: https://doi.org/10.18203/2320-6012.ijrms20233971

Mwangi WC, Waudo W, Shigwenya ME, Gichuki J. Phytochemical characterization, antimicrobial and antioxidant activities of Terminalia catappa methanol and aqueous extracts. BMC Complement Med Ther, 2024;24(1):137. DOI: https://doi.org/10.1186/s12906-024-04449-7

Dybiec J, Baran W, Dabek B, Fularski P, Mlynarska E, Radzioch E, et al. Advances in Treatment of Dyslipidemia. Int J Mol Sci. 2023;24(17):13288. DOI: https://doi.org/10.3390/ijms241713288

Institute of Laboratory Animal Resources, Guide for the Care and Use of Laboratory Animals. Eighth ed. National Academies of Sciences, Engineering, and Medicine. Washington, DC: The National Academies Press. 1996.

R Core Team, _R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. 2024.

Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne). 2024;15:1359685. DOI: https://doi.org/10.3389/fendo.2024.1359685

Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iran J Basic Med Sci. 2016;19(12):1258-70.

Miura T, Itoh C, Iwamoto N, Kato M, Kawai M, Park SR, et al. Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J Nutr Sci Vitaminol (Tokyo), 2001;47(5):340-4. DOI: https://doi.org/10.3177/jnsv.47.340

Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci, 2023;24:5. DOI: https://doi.org/10.3390/ijms24054643

Herman R, Kravos NA, Jensterle M, Janez A, Dolzan V. Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int J Mol Sci, 2022. 23(3). DOI: https://doi.org/10.3390/ijms23031264

Divya N, Rengarajan RL, Radhakrishnan R, Fathi Abd Allah E, Alqarawi AA, Hashem A, et al. Phytotherapeutic efficacy of the medicinal plant Terminalia catappa L. Saudi J Biol Sci. 2019;26(5):985-8. DOI: https://doi.org/10.1016/j.sjbs.2018.12.010

Anand AV, Divya N, Kotti PP. An updated review of Terminalia catappa. Pharmacogn Rev. 2015;9(18)::93-8. DOI: https://doi.org/10.4103/0973-7847.162103

Cao C, Su M. Effects of berberine on glucose-lipid metabolism, inflammatory factors and insulin resistance in patients with metabolic syndrome. Exp Ther Med. 2019;17(4):3009-14. DOI: https://doi.org/10.3892/etm.2019.7295

Marton LT, Pescinini MECS, Camargo SMB, Haber J, Sinatora RV, et al. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front Endocrinol (Lausanne). 2021;12:669448. DOI: https://doi.org/10.3389/fendo.2021.669448

Iheagwam FN, Iheagwam OT, Onuoha MK, Ogunlana OO, Chinedu SN. Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats. Sci Rep. 2022;12(1):10711. DOI: https://doi.org/10.1038/s41598-022-15114-9

Behl, T. and A. Kotwani, Proposed mechanisms of Terminalia catappa in hyperglycaemia and associated diabetic complications. J Pharm Pharmacol. 2017;69(2):123-34. DOI: https://doi.org/10.1111/jphp.12676

Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, et al. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem. 1999;274(20):14112-21. DOI: https://doi.org/10.1074/jbc.274.20.14112

Lytrivi M, Castell AL, Poitout V, Cnop M. Recent Insights Into Mechanisms of beta-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J Mol Biol. 2020;432(5):1514-34. DOI: https://doi.org/10.1016/j.jmb.2019.09.016

Masjedi F, Gol A, Dabiri S. Preventive Effect of Garlic (Allium sativum L.) on Serum Biochemical Factors and Histopathology of Pancreas and Liver in Streptozotocin-Induced Diabetic Rats. Iran J Pharm Res, 2013;12(3):325-38.

Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, et al. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants (Basel), 2021;10(12):2751. DOI: https://doi.org/10.3390/plants10122751

Lee MS, Chyau CC, Wang CP, Wang TH, Chen JH, Lin HH. Flavonoids Identification and Pancreatic Beta-Cell Protective Effect of Lotus Seedpod. Antioxidants (Basel). 2020;9(8):10. DOI: https://doi.org/10.3390/antiox9080658

Alidrisi HA, Al-Ibadi AA, Al-Saidi JS, Alsawad MA, Jameel AA, Al-Shati AW. Comparative Analysis of Glycemic and Lipid Profiles in Newly Diagnosed Males and Females With Type 2 Diabetes Mellitus. Cureus. 2023;15(12):e50101. DOI: https://doi.org/10.7759/cureus.50101

Katz DL. Plant-Based Diets for Reversing Disease and Saving the Planet: Past, Present, and Future. Adv Nutr. 2019;10(4):S304-7. DOI: https://doi.org/10.1093/advances/nmy124

Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res. 2022;38(1):18. DOI: https://doi.org/10.1186/s42826-022-00128-1

Downloads

Published

2025-02-28

How to Cite

Batubo, N. P., Reuben, E., Opusunju, B. H., Sunday Ogbu, O., & Datonye Victor, D. (2025). Antidiabetic effects of n-hexane extract of terminalia catappa nuts in Wistar rats induced with hyperlipidaemia and hyperglycaemia. International Journal of Research in Medical Sciences, 13(3), 1004–1011. https://doi.org/10.18203/2320-6012.ijrms20250659

Issue

Section

Original Research Articles