Cutaneous vasculopathy in microscopic colitis: the role of gut-derived endothelial toxins

Authors

  • Travis Jackson University of Missouri School of Medicine, Columbia, MO, USA
  • Karen Gonzalez SUNY Upstate Medical University, Syracuse, NY, USA
  • Guang Orestes Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, USA
  • Carolina M. Benitez SUNY Upstate Medical University, Syracuse, NY, USA
  • Muhammad Hassan Vassar Brothers Medical Center, Poughkeepsie, NY, USA
  • Paige O’Brien Daly Edward Via College of Osteopathic Medicine, Blacksburg, USA
  • Reem Ayoub Texas College of Osteopathic Medicine, Fort Worth, TX, USA
  • Lynn Fadel California Health Sciences University College of Osteopathic Medicine, USA

DOI:

https://doi.org/10.18203/2320-6012.ijrms20251342

Keywords:

Microscopic colitis, Cutaneous vasculopathy, Livedo reticularis, Leukocytoclastic vasculitis, Gut dysbiosis, Endothelial dysfunction, Lipopolysaccharides, Microbial metabolites, Vascular injury, Gut-skin connection

Abstract

Microscopic colitis (MC) is a chronic inflammatory bowel disorder marked by persistent diarrhea and colonic mucosal inflammation. Emerging evidence suggests systemic manifestations, including cutaneous vasculopathy such as livedo reticularis and leukocytoclastic vasculitis, potentially driven by gut-derived endothelial toxins. However, the mechanisms linking MC to microvascular disorders remain poorly understood. This review examines the interplay between MC, gut dysbiosis, and systemic endothelial dysfunction, emphasizing the role of gut-derived toxins like lipopolysaccharides and microbial metabolites in vascular injury. A comprehensive literature search was conducted across PubMed, EMBASE, and Web of Science using predefined terms. Studies were appraised with standardized quality tools, and findings were categorized into endothelial toxin profiles, mechanisms of vascular injury, and clinical correlations. Emphasis was placed on studies using advanced techniques, such as metabolomics for toxin analysis, histopathology for vasculitis lesions, and imaging for vascular assessment. Evidence highlights a potential link between gut-derived toxins and systemic vascular effects in MC, though causality remains unproven. Variability in toxin profiles among MC patients and their correlation with cutaneous manifestations were noted. Key knowledge gaps include mechanisms of endothelial dysfunction, variability in toxin-mediated vascular injury, and lack of standardized diagnostic criteria for MC-associated vasculopathy. Further longitudinal and mechanistic studies are needed. Clarifying the role of endothelial toxins in MC-associated vasculopathy could lead to novel diagnostic biomarkers, therapeutic targets, and improved outcomes for patients with MC and its systemic vascular complications.

Metrics

Metrics Loading ...

References

Songtanin B, Chen JN, Nugent K. Microscopic colitis: pathogenesis and diagnosis. J of Clin Med. 2023;12(13):4442. DOI: https://doi.org/10.3390/jcm12134442

Fărcaş RA, Grad S, Dumitraşcu DL. Microscopic colitis: an update. Med Pharm Reports. 2022;95(4):370. DOI: https://doi.org/10.15386/mpr-2389

Nielsen OH, Fernandez-Banares F, Sato T, Pardi DS. Microscopic colitis: Etiopathology, diagnosis, and rational management. Elife. 2022;11:79397. DOI: https://doi.org/10.7554/eLife.79397

Sajjan VV, Lunge S, Swamy MB, Pandit AM. Livedo reticularis: a review of the literature. Indian Dermatol online J. 2015;6(5):315-21. DOI: https://doi.org/10.4103/2229-5178.164493

Baigrie D, Goyal A, Crane JS. Leukocytoclastic vasculitis. Available at: https://www.ncbi.nlm.nih. Accessed on 21 November 2024.

van Hemert S, Skonieczna-Żydecka K, Loniewski I, Szredzki P, Marlicz W. Microscopic colitis—microbiome, barrier function and associated diseases. Ann of Transl Med. 2018;6(3):39. DOI: https://doi.org/10.21037/atm.2017.03.83

Park E, Park YS, Park DR, Jung SA, Han DS, Jang BI. expression of microscopic colitis including interleukin-17. Gut and Liver. 2014;9(3):381. DOI: https://doi.org/10.5009/gnl13439

Kumawat AK, Strid H, Tysk C, Bohr J, Hörnquist EH. Microscopic colitis patients demonstrate a mixed Th17/Tc17 and Th1/Tc1 mucosal cytokine profile. Molecular immunology. 2013;55(3):355-64. DOI: https://doi.org/10.1016/j.molimm.2013.03.007

Christovich A, Luo XM. Gut microbiota, leaky gut, and autoimmune diseases. Frontiers in Immunol. 2022;13:946248. DOI: https://doi.org/10.3389/fimmu.2022.946248

Mann EA, Bae E, Kostyuchek D, Chung HJ, McGee JS. The gut microbiome: human health and inflammatory skin diseases. Ann Dermatol. 2020;32(4):265. DOI: https://doi.org/10.5021/ad.2020.32.4.265

Candelli M, Franza L, Pignataro G, Ojetti V, Covino M, Piccioni A, et al. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. International J of Mol Sci. 2021;22(12):6242. DOI: https://doi.org/10.3390/ijms22126242

Pisani LF, Tontini G, Vecchi M, Croci GA, Pastorelli L. NF-kB pathway is involved in microscopic colitis pathogenesis. J Int Med Res. 2022;50(3):801-4. DOI: https://doi.org/10.1177/03000605221080104

Pazdrak K, Shi XZ, Sarna SK. TNFα suppresses human colonic circular smooth muscle cell contractility by SP1-and NF-κB-mediated induction of ICAM-1. Gastroenterol. 2004;127(4):1096-109. DOI: https://doi.org/10.1053/j.gastro.2004.07.008

Milstone DS, Ilyama M, Chen M, O’Donnell P, Davis VM, Plutzky J, et al. Differential role of an NF-κB transcriptional response element in endothelial versus intimal cell VCAM-1 expression. Cir Res. 2015;117(2):166-77. DOI: https://doi.org/10.1161/CIRCRESAHA.117.306666

Gu P, Theiss A, Han J, Feagins LA. Increased cell adhesion molecules, PECAM-1, ICAM-3, or VCAM-1, predict increased risk for flare in patients with quiescent inflammatory bowel disease. Journal of clinical gastroenterology. 2017;51(6):522-7. DOI: https://doi.org/10.1097/MCG.0000000000000618

Marchese ME, Berdnikovs S, Cook-Mills JM. Distinct sites within the vascular cell adhesion molecule-1 (VCAM-1) cytoplasmic domain regulate VCAM-1 activation of calcium fluxes versus Rac1 during leukocyte transendothelial migration. Biochem. 2012;51(41):8235-46. DOI: https://doi.org/10.1021/bi300925r

Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. British J Pharmacol. 2018;175(8):1279-92. DOI: https://doi.org/10.1111/bph.13828

Zanoli L, Briet M, Empana JP, Cunha PG, Mäki-Petäjä KM, Protogerou AD, et al. Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. Journal of hypertension. 2020;38(9):1682-98. DOI: https://doi.org/10.1097/HJH.0000000000002508

Hartig F, Reider N, Sojer M, Hammer A, Ploner T, Muth CM, et al. Livedo Racemosa–the pathophysiology of decompression-associated cutis marmorata and right/left shunt. Frontiers in Physiol. 2020;11:994. DOI: https://doi.org/10.3389/fphys.2020.00994

Srichawla BS. Susac syndrome with livedo reticularis: pathogenesis and literature review. Cureus. 2022;14(7)L56-8. DOI: https://doi.org/10.7759/cureus.27352

Ford V, Mooney C, Shah M, Jenkins E. Leukocytoclastic vasculitis as the presenting symptom of Crohn’s disease in an adolescent. J of Invest Med High Impact Case Reports. 2020;8:2324709620947608. DOI: https://doi.org/10.1177/2324709620947608

Carlson JA. The histological assessment of cutaneous vasculitis. Histopathol. 2010;56(1):3-23. DOI: https://doi.org/10.1111/j.1365-2559.2009.03443.x

Nassani N, Sweiss N, Berry JT, Calhoun C, Polick A, Trivedi I. Leukocytoclastic vasculitis in cutaneous crohn disease in the setting of COVID-19. Inflammatory Bowel Diseases. 2021;27(6):74-5. DOI: https://doi.org/10.1093/ibd/izab045

Yamashita T, Yoshida N, Emoto T, Saito Y, Hirata KI. Two gut microbiota-derived toxins are closely associated with cardiovascular diseases: a review. Toxins. 2021;13(5):297. DOI: https://doi.org/10.3390/toxins13050297

Rigoni R, Fontana E, Dobbs K, Marrella V, Taverniti V, Maina V, et al. Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome. J Aller and Clin Immunol. 2020;146(5):1165-79. DOI: https://doi.org/10.1016/j.jaci.2020.04.005

Tagkalidis PP, Gibson PR, Bhathal PS. Microscopic colitis demonstrates a T helper cell type 1 mucosal cytokine profile. J Clin Pathol. 2007;60(4):382-7. DOI: https://doi.org/10.1136/jcp.2005.036376

Violi F, Cammisotto V, Bartimoccia S, Pignatelli P, Carnevale R, Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nature Rev Cardiol. 2023;20(1):24-37. DOI: https://doi.org/10.1038/s41569-022-00737-2

Matas-Garcia A, Milisenda JC, Espinosa G, Cuatrecasas M, Selva-O’Callaghan A, Grau JM, Prieto-González S. Gastrointestinal involvement in dermatomyositis. Diagnostics. 2022;12(5):1200. DOI: https://doi.org/10.3390/diagnostics12051200

Tome J, Kamboj AK, Pardi DS. Microscopic colitis: a concise review for clinicians. InMayo Clinic Proceedings 2021;96(5):1302-8. DOI: https://doi.org/10.1016/j.mayocp.2021.03.022

Eswaran H, Googe P, Vedak P, Marston WA, Moll S. Livedoid vasculopathy: a review with focus on terminology and pathogenesis. Vascular Medicine. 2022;27(6):593-603. DOI: https://doi.org/10.1177/1358863X221130380

Huang J, Kelly CP, Bakirtzi K, Villafuerte Gálvez JA, Lyras D, Mileto SJ, et al. Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nature microbiology. 2019;4(2):269-79. DOI: https://doi.org/10.1038/s41564-018-0300-x

Chen S, Nie R, Wang C, Luan H, Ma X, Gui Y, Zeng X, Yuan H. A two sample mendelian randomization analysis investigates causal effects between gut microbiome and immune related Vasculitis. Scientific Reports. 2024;14(1):18810. DOI: https://doi.org/10.1038/s41598-024-68205-0

Kul S, Caliskan Z, Guvenc TS, Celik FB, Sarmis A, Atici A, et al. Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to endothelial and coronary microvascular function in patients with inflammatory bowel disease. Microvas Res. 2023;146:104458. DOI: https://doi.org/10.1016/j.mvr.2022.104458

Pisani LF, Tontini GE, Marinoni B, Villanacci V, Bruni B, Vecchi M, et al. Biomarkers and microscopic colitis: an unmet need in clinical practice. Frontiers in Med. 2017;4:54. DOI: https://doi.org/10.3389/fmed.2017.00054

Zhou J, Li M, Chen Q, Li X, Chen L, Dong Z, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nature Comm. 2022;13(1):3432. DOI: https://doi.org/10.1038/s41467-022-31171-0

Preidis GA, Weizman AV, Kashyap PC, Morgan RL. AGA Technical Review on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterol. 2020;159(2):708–38. DOI: https://doi.org/10.1053/j.gastro.2020.05.060

Chande N, MacDonald JK, McDonald JW. Interventions for treating microscopic colitis: a cochrane inflammatory bowel disease and functional bowel disorders review group systematic review of randomized trials. ACG. 2009;104(1):235-41. DOI: https://doi.org/10.1038/ajg.2008.16

Nielsen OH, Pardi DS. Diagnosis and Pharmacological Management of Microscopic Colitis in Geriatric Care. Drugs & Age. 2024;41(2):113–23. DOI: https://doi.org/10.1007/s40266-023-01094-6

Downloads

Published

2025-04-29

How to Cite

Jackson, T., Gonzalez, K., Orestes, G., Benitez, C. M., Hassan, M., Daly, P. O., Ayoub, R., & Fadel, L. (2025). Cutaneous vasculopathy in microscopic colitis: the role of gut-derived endothelial toxins. International Journal of Research in Medical Sciences, 13(5), 2227–2233. https://doi.org/10.18203/2320-6012.ijrms20251342

Issue

Section

Review Articles