Noise induced hearing loss-a review of literature
DOI:
https://doi.org/10.18203/2320-6012.ijrms20251012Keywords:
Noise induced hearing loss, Sensorineural hearing loss, Noise exposure and hearing lossAbstract
Noise-induced hearing loss (NIHL) is one of the most prevalent occupational and environmental health concerns worldwide. First identified as "boilermaker’s disease," NIHL remains the second most common cause of hearing impairment after presbycusis, affecting millions globally. This article explores the pathophysiology of NIHL, including harmful noise levels, cochlear damage mechanisms, oxidative stress, and genetic predispositions. It also reviews current diagnostic approaches, such as pure-tone audiometry, otoacoustic emissions (OAE), and electrophysiological testing, which help in early detection. The prevention of NIHL is discussed in the context of global legislative efforts, hearing conservation programs, and protective devices. Additionally, pharmacological advancements, including antioxidants, anti-inflammatory agents, and emerging gene therapies, are highlighted as potential interventions. With increasing noise pollution from occupational and recreational sources, understanding NIHL and its management is critical for reducing its long-term impact on public health.
Metrics
References
Ward WD, Royster JD. Auditory and non-auditory effects of noise. J Acoust Soc Am. 2000;108(1):217-21.
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-22. DOI: https://doi.org/10.1016/S0140-6736(20)30925-9
Centers for Disease Control and Prevention (CDC). Noise-induced hearing loss. Available at: https://www.cdc.gov/niosh/topics/noise/default.html. Accessed on 28 December 2024.
American National Standards Institute (ANSI). Specification for Audiometers. ANSI S3.6-2010. New York: ANSI. 2010.
World Health Organization (WHO). Hearing loss due to noise. Geneva: World Health Organization; 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. Accessed on 28 December 2024.
Imam M, Hannan MA. Effects of prolonged exposure to high noise levels on hearing. J Hear Sci. 2017;15(2):45-51.
American Speech-Language-Hearing Association (ASHA). Noise-induced hearing loss. Available at: https://www.asha.org/public/hearing/Noise-Induced-Hearing-Loss/. Accessed on 28 December 2024.
Canlon B, Flock Å. Temporary and permanent hearing loss caused by noise exposure: the role of oxidative stress. Acta Otolaryngol. 2018;138(9):877-83.
Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol. 2004;91(3):1282-96. DOI: https://doi.org/10.1152/jn.01125.2002
Natarajan N, Batts S, Stankovic KM. Noise-induced hearing loss. J Clin Med. 2023;12(6):2347. DOI: https://doi.org/10.3390/jcm12062347
Housley GD, Morton-Jones R, Vlajkovic SM, Telang RS, Paramananthasivam V, Tadros SF, et al. ATP-gated ion channels mediate adaptation to elevated sound levels. Proc Natl Acad Sci U S A. 2013;110(18):7494-9. DOI: https://doi.org/10.1073/pnas.1222295110
Cheng PW, Liu SH, Young YH, Hsu CJ, Lin-Shiau SY. Protection from noise-induced temporary threshold shift by d-methionine is associated with preservation of ATPase activities. Ear Hear. 2008;29(1):65-75. DOI: https://doi.org/10.1097/AUD.0b013e31815d635b
Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, et al. The Role of Genetic Variants in the Susceptibility of Noise-Induced Hearing Loss. Front Cell Neurosci. 2022;16:946206. DOI: https://doi.org/10.3389/fncel.2022.946206
Gunny AAN, Mydin RH, Abdullah S. Noise-induced hearing loss: engineering control at industry and clinical audiology approach at hospital level. IOP Conf Ser Mater Sci Eng. 2018;429(1):012034. DOI: https://doi.org/10.1088/1757-899X/429/1/012034
Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg. 2017;46(1):41. DOI: https://doi.org/10.1186/s40463-017-0219-x
Blanchfield BB, Feldman JJ, Dunbar JL, Gardner EN. The severely to profoundly hearing-impaired population in the United States: prevalence estimates and demographics. J Am Acad Audiol. 2001;12(4):183-9. DOI: https://doi.org/10.1055/s-0042-1745596
Makaruse N, Maslin MRD, Shai Campbell Z. Early identification of potential occupational noise-induced hearing loss: a systematic review. Int J Audiol. 2024;1-10. DOI: https://doi.org/10.1080/14992027.2024.2418354
Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS One. 2016;11(9):e0162726. DOI: https://doi.org/10.1371/journal.pone.0162726
Attias J, Horovitz G, El-Hatib N, Nageris B. Detection and clinical diagnosis of noise-induced hearing loss by otoacoustic emissions. Noise Health. 2001;3(12):19-31.
Job A, Raynal M, Kossowski M, Studler M, Ghernaouti C, Baffioni-Venturi A, et al. Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: A 3-year follow-up study. Hear Res. 2009;251(1-2):10-6. DOI: https://doi.org/10.1016/j.heares.2009.02.008
Sisto R, Chelotti S, Moriconi L, Pellegrini S, Citroni A, Monechi V, et al. Otoacoustic emission sensitivity to low levels of noise-induced hearing loss. J Acoust Soc Am. 2007;122(1):387-401. DOI: https://doi.org/10.1121/1.2737668
Fernandez KA, Jeffers PW, Lall K, Liberman MC, Kujawa SG. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears. J Neurosci. 2015;35(19):7509-20. DOI: https://doi.org/10.1523/JNEUROSCI.5138-14.2015
Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res. 2017;349:138-47. DOI: https://doi.org/10.1016/j.heares.2017.01.003
Valero MD, Hancock KE, Liberman MC. The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hear Res. 2016;332:29-38. DOI: https://doi.org/10.1016/j.heares.2015.11.005
Arenas JP, Suter AH. Comparison of occupational noise legislation in the Americas: an overview and analysis. Noise Health. 2014;16:306-19. DOI: https://doi.org/10.4103/1463-1741.140511
Neufeld A, Westerberg BD, Nabi S, Bryce G, Bureau Y. Prospective, randomized controlled assessment of the short- and long-term efficacy of a hearing conservation education program in Canadian elementary school children. The Laryngoscope. 2011;121:176-81. DOI: https://doi.org/10.1002/lary.21185
Verbeek JH, Kateman E, Morata TC, Dreschler WA, Mischke C. Interventions to prevent occupational noise-induced hearing loss. Cochrane Database Syst Rev. 2012;2012(10):CD006396. DOI: https://doi.org/10.1002/14651858.CD006396.pub3
Joy GJ, Middendorf PJ. Noise Exposure and Hearing Conservation in U.S. Coal Mines-A Surveillance Report. J Occupat Environment Hyg. 2007;4(1):26-35. DOI: https://doi.org/10.1080/15459620601067209
Dobie RA, Clark WW. Exchange rates for intermittent and fluctuating occupational noise: a systematic review of studies of human permanent threshold shift. Ear Hear. 2014;35:86-96. DOI: https://doi.org/10.1097/AUD.0b013e3182a143ec
Mrena R, Ylikoski J, Kiukaanniemi H, Mäkitie AA, Savolainen S. The effect of improved hearing protection regulations in the prevention of military noise-induced hearing loss. Acta Oto-Laryngologica. 2008;128(9):997-1003. DOI: https://doi.org/10.1080/00016480701813111
Arezes PM, Miguel AS. Hearing protectors acceptability in noisy environments. Ann Occup Hyg. 2002;46(6):531-6.
Ahmadi S, Nassiri P, Ghasemi I, Monazzam MR. Acoustic performance of 3D printed nanocomposite earmuff. Glob J Health Sci. 2016;8(1):180-7. DOI: https://doi.org/10.5539/gjhs.v8n1p180
Lazard DS, Vincent C, Venail F, Van de Heyning P, Truy E, Sterkers O, et al. Pre-, per- and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: a new conceptual model over time. PLoS One. 2012;7(11):e48739. DOI: https://doi.org/10.1371/journal.pone.0048739
Santaolalla Sanchez FJ, Gutierrez Posso JD, Santaolalla Montoya F, Zabala JA, Arrizabalaga-Iriondo A, Revuelta M, et al. Pathogenesis and New Pharmacological Approaches to Noise-Induced Hearing Loss: A Systematic Review. Antioxidants (Basel). 2024;13(9):1105. DOI: https://doi.org/10.3390/antiox13091105
Campbell K, Cosenza N, Meech R, Buhnerkempe M, Qin J, Rybak L, et al. Preloaded D-methionine protects from steady state and impulse noise-induced hearing loss and induces long-term cochlear and endogenous antioxidant effects. PLoS One. 2021;16(12):e0261049. DOI: https://doi.org/10.1371/journal.pone.0261049
Campbell KCM, Cosenza N, Meech R, Buhnerkempe M, Qin J, Rybak L, et al. D-methionine immediate and continued rescue after noise exposure does not prevent temporary threshold shift but alters cochlear and serum antioxidant levels. Int J Audiol. 2022;61(10):769-77. DOI: https://doi.org/10.1080/14992027.2021.1959659
Choi CH, Du X, Floyd RA, Kopke RD. Therapeutic effects of orally administrated antioxidant drugs on acute noise-induced hearing loss. Free Radic Res. 2014;48(3):264-72. DOI: https://doi.org/10.3109/10715762.2013.861599
Ada S, Hanci D, Ulusoy S, Vejselova D, Burukoglu D, Muluk NB, et al. Potential protective effect of N-acetyl cysteine in acoustic trauma: An experimental study using scanning electron microscopy. Adv Clin Exp Med. 2017;26:893-7. DOI: https://doi.org/10.17219/acem/64332
Chen L, Dean C, Gandolfi M, Edmund N, Linda M, Kim AH. Dexamethasone’s effect in the retrocochlear auditory centers of a noise-induced hearing loss mouse model. J Otolaryngol Head Neck Surg. 2014;151(4):667-4. DOI: https://doi.org/10.1177/0194599814545771
Han MA, Back SA, Kim HL, Park SP, Yeo SW, Park SN. Therapeutic Effect of Dexamethasone for Noise-induced Hearing Loss: Systemic Versus Intratympanic Injection in Mice. Otol Neurotol. 2015;36:755-62. DOI: https://doi.org/10.1097/MAO.0000000000000759
Chang YS, Lee HY, Kim HJ, Kang HH, Park CH, Yeo SW, et al. Effects of early intratympanic steroid injection in patients with acoustic trauma caused by gunshot noise. Acta Oto-Laryngol. 2017;137(7):728-33. DOI: https://doi.org/10.1080/00016489.2017.1280850
Choi N, Kim JY, Cho YS, Hong SH, Chung WH. Comparison of oral steroid regimens for acute acoustic trauma caused by gunshot noise exposure. J Laryngol Otol. 2019;133(7):566-70. DOI: https://doi.org/10.1017/S002221511900121X
Le TP, Yu Y, Cho IS, Suh EY, Kwon HC, Shin SA, et al. Injectable Poloxamer Hydrogel Formulations for Intratympanic Delivery of Dexamethasone. J Korean Med Sci. 2023;38(17):e135. DOI: https://doi.org/10.3346/jkms.2023.38.e135
Hwang YJ, Oh SH, Lee JH, Park MK, Suh MW. Biosafety and potency of high-molecular-weight hyaluronic acid with intratympanic dexamethasone delivery for acute hearing loss. Front Pharmacol. 2024:1294657. DOI: https://doi.org/10.3389/fphar.2024.1294657
Yao Y, Li L. Analysis of Therapeutic Options for Noise-Induced Hearing Loss: Retroauricular Injection of Methylprednisolone Sodium Succinate Combined with Hyperbaric Oxygenation. Noise Health. 2024 Jul-Sep 01;26(122):370-5. DOI: https://doi.org/10.4103/nah.nah_60_24
Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ, Lynch ED, et al. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2017;390(10098):969-79. DOI: https://doi.org/10.1016/S0140-6736(17)31791-9
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci. 2022;15:814891. DOI: https://doi.org/10.3389/fncel.2021.814891