Predicting the risk of drug-induced urticaria in patients with an allergic history using artificial neural networks
DOI:
https://doi.org/10.18203/2320-6012.ijrms20251621Keywords:
Artificial intelligence, Artificial neural networks, Drug-induced, UrticariaAbstract
Background: Drug-induced urticaria is a frequent hypersensitivity reaction. Identifying individuals at risk is crucial for clinical decision-making. Artificial neural networks (ANNs) offer a promising approach to predicting adverse drug reactions in allergic patients.
Methods: We conducted a retrospective analysis using a dataset of patients with known allergic history. Various ANN architectures were trained and validated to predict drug-induced urticaria based on demographic, clinical, and pharmacological variables. Model performance was assessed using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC).
Results: The ANN model achieved high predictive accuracy, outperforming traditional statistical methods. Key predictive variables included previous allergic reactions, drug type, and comorbidities. The model demonstrated robust generalizability in external validation.
Conclusions: ANNs provide an effective tool for predicting drug-induced urticaria in allergic patients. Their implementation could enhance personalized medicine strategies and improve patient safety. Further prospective studies are needed to confirm these findings in broader populations.
Metrics
References
Zuberbier T, Bernstein JA, Maurer M. Chronic spontaneous urticaria guidelines: What is new? J Allergy Clin Immunol. 2022;150(6):1249-55. DOI: https://doi.org/10.1016/j.jaci.2022.10.004
Sánchez-Borges M, Ansotegui IJ, Baiardini I, Bernstein J, Canonica GW, Ebisawa M, et al. The challenges of chronic urticaria part 1: Epidemiology, immunopathogenesis, comorbidities, quality of life, and management. World Aller Org J. 2021;14(6):100533. DOI: https://doi.org/10.1016/j.waojou.2021.100533
Mathelier-Fusade P. Drug-induced urticarias. Clin Rev Allergy Immunol. 2006;30(1):19-23. DOI: https://doi.org/10.1385/CRIAI:30:1:019
Shipley D, Ormerod AD. Drug-induced urticaria. Recognition and treatment. Am J Clin Dermatol. 2001;2(3):151-8. DOI: https://doi.org/10.2165/00128071-200102030-00004
Zuberbier T, Asero R, Bindslev‐Jensen C, Walter Canonica G, Church MK, Giménez‐Arnau AM, et al. EAACI/ GA²LEN/ EDF/ WAO guideline: Management of urticaria. Allergy. 2009;64(10):1427-43. DOI: https://doi.org/10.1111/j.1398-9995.2009.02178.x
Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, et al. Drug allergy: a 2022 practice parameter update. J Allerg Clin Immunol. 2022;150(6):1333-93. DOI: https://doi.org/10.1016/j.jaci.2022.08.028
Desai MK. Artificial intelligence in pharmacovigilance-opportunities and challenges. Perspect Clin Res. 2024;15(3):116-21. DOI: https://doi.org/10.4103/picr.picr_290_23
Li Z, Koban KC, Schenck TL, Giunta RE, Li Q, Sun Y. Artificial intelligence in dermatology image analysis: current developments and future trends. J Clin Med. 2022;11(22):6826. DOI: https://doi.org/10.3390/jcm11226826
Toni E, Ayatollahi H, Abbaszadeh R, Fotuhi Siahpirani A. Machine learning techniques for predicting drug-related side effects: a scoping review. Pharmaceuticals (Basel). 2024;17(6):795. DOI: https://doi.org/10.3390/ph17060795
Hu Q, Li J, Li X, Zou D, Xu T, He Z. Machine learning to predict adverse drug events based on electronic health records: a systematic review and meta-analysis. Journal of International Medical Research. 2024;52(12):1. DOI: https://doi.org/10.1177/03000605241302304
Dsouza VS, Leyens L, Kurian JR, Brand A, Brand H. Artificial intelligence (AI) in pharmacovigilance: A systematic review on predicting adverse drug reactions (ADR) in hospitalized patients. Res Social Adm Pharm. 2025;21(6):453-462. DOI: https://doi.org/10.1016/j.sapharm.2025.02.008
Núñez R, Doña I, Cornejo-García JA. Predictive models and applicability of artificial intelligence-based approaches in drug allergy. Curr Opin Allergy Clin Immunol. 2024;24(4):189-94. DOI: https://doi.org/10.1097/ACI.0000000000001002
Blackley SV, Salem A, Zhou L. Deep learning for detection of drug hypersensitivity reactions. J Allergy Clin Immunol. 2023;152(2):350-2. DOI: https://doi.org/10.1016/j.jaci.2023.03.004
Moreno EM, Moreno V, Laffond E, Gracia-Bara MT, Muñoz-Bellido FJ, Macías EM, et al. Usefulness of an Artificial Neural Network in the Prediction of β-Lactam Allergy. J Allergy Clin Immunol Pract. 2020;8(9):2974-2982.e1. DOI: https://doi.org/10.1016/j.jaip.2020.07.010
Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005;9(2):R150-6. DOI: https://doi.org/10.1186/cc3054
Hu Q, Chen Y, Zou D, He Z, Xu T. Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis. Front Pharmacol. 2024;15:1497397. DOI: https://doi.org/10.3389/fphar.2024.1497397
Maker JH, Stroup CM, Huang V, James SF. Antibiotic Hypersensitivity Mechanisms. Pharmacy (Basel). 2019;7(3):122. DOI: https://doi.org/10.3390/pharmacy7030122
Alfirevic A, Pirmohamed M. Drug-induced hypersensitivity reactions and pharmacogenomics: past, present and future. Pharmacogenomics. 2010;11(4):49. DOI: https://doi.org/10.2217/pgs.10.12
Kinirons MT, O'Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol. 2004;57(5):540-4. DOI: https://doi.org/10.1111/j.1365-2125.2004.02096.x
Garon SL, Pavlos RK, White KD, Brown NJ, Stone CA Jr, Phillips EJ. Pharmacogenomics of off-target adverse drug reactions. Br J Clin Pharmacol. 2017;83(9):1896-911. DOI: https://doi.org/10.1111/bcp.13294