Erythrokeratodermia variabilis et progressiva: clinical features, molecular insights, and therapeutic perspectives
DOI:
https://doi.org/10.18203/2320-6012.ijrms20251668Keywords:
Erythrokeratodermia variabilis et progressiva, Genodermatosis, Connexins, GJB3, GJB4, Skin diseases, Hyperkeratosis, Genetic mutations, Targeted therapiesAbstract
Erythrokeratodermia variabilis et progressiva (EKVP) is a rare genodermatosis characterized by transient, erythematous patches and persistent hyperkeratotic plaques with a highly variable clinical presentation. As a disorder predominantly linked to pathogenic variants in GJB3 and GJB4, encoding connexin proteins essential for intercellular communication, EKVP highlights the critical role of gap junction integrity in epidermal homeostasis. This article aims to provide a comprehensive overview of EKVP, focusing on its clinical manifestations, pathophysiological mechanisms, and the role of molecular diagnostics in confirming the diagnosis. Additionally, emerging treatment strategies, including targeted therapies and advances in genetic counseling, are discussed. Enhanced understanding of EKVP’s molecular underpinnings has paved the way for innovative therapeutic approaches, offering new hope for affected individuals.
Metrics
References
Macfarlane AW, Chapman SJ, Verbov JL. Is erythrokeratoderma one disorder? A clinical and ultrastructural study of two siblings. Br J Dermatol. 1991;124(5):487-91. DOI: https://doi.org/10.1111/j.1365-2133.1991.tb00632.x
Yoo S, Simzar S, Han K, Takahashi S, Cotliar R. Erythrokeratoderma variabilis successfully treated with topical tazarotene. Pediatr Dermatol. 2006;23(4):382-5. DOI: https://doi.org/10.1111/j.1525-1470.2006.00252.x
Gewirtzman GB, Winkler NW, Dobson RL. Erythrokeratodermia variabilis. A family study. Arch Dermatol. 1978;114(2):259-61. DOI: https://doi.org/10.1001/archderm.1978.01640140077020
Rogers M. Erythrokeratodermas: a classification in a state of flux? Australas J Dermatol. 2005;46(3):127-41. DOI: https://doi.org/10.1111/j.1440-0960.2005.00165.x
Gottfried I, Landau M, Glaser F, Wei-Li D, Joseph O, Barukh M, et al. A mutation in GJB3 is associated with recessive erythrokeratodermia variabilis (EKV) and leads to defective trafficking of the connexin 31 protein. Hum Mol Genet. 2002;11(11):1311-6. DOI: https://doi.org/10.1093/hmg/11.11.1311
Terrinoni A, Leta A, Pedicelli C, Eleonora C, Marco R, Pietro P, et al. A novel recessive connexin 31 (GJB3) mutation in a case of erythrokeratodermia variabilis. J Invest Dermatol. 2004;122(3):837-9. DOI: https://doi.org/10.1111/j.0022-202X.2004.22311.x
Glatz M, van Steensel MA, van Geel M, Steijlen PM, Wolf P. An unusual missense mutation in the GJB3 gene resulting in severe erythrokeratodermia variabilis. Acta Derm Venereol. 2011;91(6):714-5. DOI: https://doi.org/10.2340/00015555-1135
Boyden LM, Craiglow BG, Zhou J, Ronghua H, Erin CL, Kimberly DM, et al. Dominant de novo mutations in GJA1 cause erythrokeratodermia variabilis et progressiva, without features of oculodentodigital dysplasia. J Invest Dermatol. 2015;135(6):1540-7. DOI: https://doi.org/10.1038/jid.2014.485
Shah K, Ansar M, Mughal ZU, Falak SK, Wasim A, Tracey MF, et al. Recessive progressive symmetric erythrokeratoderma results from a homozygous loss-of-function mutation of KRT83 and is allelic with dominant monilethrix. J Med Genet. 2017;54(3):186-9. DOI: https://doi.org/10.1136/jmedgenet-2016-104107
Boyden LM, Vincent NG, Zhou J, Ronghua H, Brittany GC, Susan JB, et al. Mutations in KDSR cause recessive progressive symmetric erythrokeratoderma. Am J Hum Genet. 2017;100(6):978-84. DOI: https://doi.org/10.1016/j.ajhg.2017.05.003
Common JE, O'Toole EA, Leigh IM, Anna T, William ADG, Vanessa V, et al. Clinical and genetic heterogeneity of erythrokeratoderma variabilis. J Invest Dermatol. 2005;125(5):920-7. DOI: https://doi.org/10.1111/j.0022-202X.2005.23919.x
Richard G, Brown N, Rouan F, Jan-Gerrit VS, Emilia B, Lawrence FE, et al. Genetic heterogeneity in erythrokeratodermia variabilis: novel mutations in the connexin gene GJB4 (Cx30.3) and genotype-phenotype correlations. J Invest Dermatol. 2003;120(4):601-9. DOI: https://doi.org/10.1046/j.1523-1747.2003.12080.x
Lee JY, Choi EJ, Lee J. A new high-throughput screening-compatible gap junctional intercellular communication assay. BMC Biotechnol. 2015;15:90. DOI: https://doi.org/10.1186/s12896-015-0211-3
Laird DW, Naus CC, Lampe PD. SnapShot: connexins and disease. Cell. 2017;170:1260.e1. DOI: https://doi.org/10.1016/j.cell.2017.08.034
Di WL, Rugg EL, Leigh IM, Kelsell DP. Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol. 2001;117:958-64. DOI: https://doi.org/10.1046/j.0022-202x.2001.01468.x
Avshalumova L, Fabrikant J, Koriakos A. Overview of skin diseases linked to connexin gene mutations. Int J Dermatol. 2014;53:192-205. DOI: https://doi.org/10.1111/ijd.12062
Di WL, Monypenny J, Common JE, Cameron TCK, Katalin AH, Irene ML, et al. Defective trafficking and cell death is characteristic of skin disease-associated connexin 31 mutations. Hum Mol Genet. 2002;11(17):2005-14. DOI: https://doi.org/10.1093/hmg/11.17.2005