Risk factor profiling in congenital heart disease: maternal and foetal determinants
DOI:
https://doi.org/10.18203/2320-6012.ijrms20251425Keywords:
Congenital heart disease, Environmental and genetic risk factors, Maternal health, Socioeconomic condition, ConsanguinityAbstract
Congenital heart defects (CHDs) pose a substantial challenge to global public health, significantly impacting infant morbidity and mortality rates. This investigation seeks to examine the environmental factors, such as air and water pollution, and workplace exposures, that may influence the occurrence of CHDs in the area. The study evaluated mothers' exposure to various environmental contaminants, lifestyle choices, maternal health, and local industrial activities. Initial results indicate that exposure to high concentrations of air and water pollutants, especially from nearby mining and agricultural operations, may be strongly associated with a higher incidence of CHDs. Moreover, socioeconomic conditions, consanguineous marriages, and insufficient access to prenatal care were identified as important contributing factors.
Metrics
References
Ashiq S, Ashiq K. Genetic perspective of the congenital heart disease. Pak Heart J. 2020;53(3):89-92. DOI: https://doi.org/10.47144/phj.v53i3.1982
Wu W, He J, Shao X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990–2017. Medicine (Baltimore). 2020;99(23):76-9. DOI: https://doi.org/10.1097/MD.0000000000020593
Pedra CA, Haddad J, Pedra SF, Peirone A, Pilla CB, Marin-Neto JA. Paediatric and congenital heart disease in South America: an overview. Heart. 2009;95(17):1385–92. DOI: https://doi.org/10.1136/hrt.2008.152017
Van Der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7. DOI: https://doi.org/10.1016/j.jacc.2011.08.025
Saxena A. Congenital heart disease in India: A status report. Indian Pediatr. 2018;55(12):1075–82. DOI: https://doi.org/10.1007/s13312-018-1445-7
Chaudhary Y, Patil S. Foetal Cardiac Anomalies: Experience in a Primary Referral Centre. J Foetal Med. 2018;5(4):221–4. DOI: https://doi.org/10.1007/s40556-018-0184-0
Sahu Y, Soni J, Rathore P, Choudhary S. To find out the spectrum of congenital and acquired heart disease at tertiary care centre of western Rajasthan. J Med Biomed Stud. 2019;3(5):65-8. DOI: https://doi.org/10.32553/ijmbs.v3i5.229
Baroopal A, Mathur R, Sanghvi S, Soni J. Pattern of congenital heart diseases in Western Rajasthan: an echocardiographic study. Int J Res Med Sci. 2020;8(4):45-8. DOI: https://doi.org/10.18203/2320-6012.ijrms20201330
Vyas R, Verma S, Malu V. Distribution of congenital malformations at birth in a tertiary care hospital in North-Western Rajasthan. Int J Reprod Contracept Obstet Gynecol. 2016;5(12):4282. DOI: https://doi.org/10.18203/2320-1770.ijrcog20164328
Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci CMLS. 2006;63:1141–8. DOI: https://doi.org/10.1007/s00018-005-5532-2
Jaiswal V, Hanif M, Jaiswal A, Sundas F, Gimelli A, Grubb K. Association between congenital heart disease and the risk of cancer and its subtypes. Circulation. 2024;150(1):672-6. DOI: https://doi.org/10.1161/circ.150.suppl_1.4144928
Jat N, Bhagwani D, Bhutani N, Sharma U, Sharma R, Gupta R. Assessment of the prevalence of congenital heart disease in children with pneumonia in tertiary care hospital: A cross-sectional study. Ann Med Surg. 2022;73:103111. DOI: https://doi.org/10.1016/j.amsu.2021.103111
Healy F, Hanna B, Zinman R. Pulmonary Complications of Congenital Heart Disease. Paediatr Respir Rev. 2012;13(1):10–5. DOI: https://doi.org/10.1016/j.prrv.2011.01.007
Reiter F, Hadjamu N, Nagdyman N, Zachoval R, Mayerle J, De Toni E, et al. Congenital heart disease-associated liver disease: a narrative review. Cardiovasc Diagn Ther. 2020;11(2). DOI: https://doi.org/10.21037/cdt-20-595
Blue G, Kirk E, Sholler G, Harvey R, Winlaw D. Congenital heart disease: current knowledge about causes and inheritance. Med J Aust. 2012;197(3):155–9. DOI: https://doi.org/10.5694/mja12.10811
Narayan P, Richter F, Morton S. Genetics and etiology of congenital heart disease. Curr Top Dev Biol. 2024;156:297–331. DOI: https://doi.org/10.1016/bs.ctdb.2024.01.009
Quan Y, Luo Y, Li J, Wang T, Zhang P, Li Y. Clinical features and genetic analysis of 471 cases of foetal congenital heart disease. BMC Pregnancy Childbirth. 2024;24:780. DOI: https://doi.org/10.1186/s12884-024-06978-y
Richards A, Garg V. Genetics of Congenital Heart Disease. Curr Cardiol Rev. 2010;6(2):91–7.
Williams K, Carson J, Lo C. Genetics of congenital heart disease. Biomolecules. 2019;9(12):879. DOI: https://doi.org/10.3390/biom9120879
Gabriel GC, Young CB, Lo CW. Role of cilia in the pathogenesis of congenital heart disease. In: Seminars in cell & developmental biology. Elsevier; 2021: 2–10. DOI: https://doi.org/10.1016/j.semcdb.2020.04.017
Wang G, Wang B, Yang P. Epigenetics in congenital heart disease. J Am Heart Assoc. 2022;11(7):25163. DOI: https://doi.org/10.1161/JAHA.121.025163
Kodo K, Yamagishi H. Current insights into genetics of congenital heart diseases: GATA and T-box cardiac transcription factors as the hotspot pathogenesis. J Pediatr Cardiol Card Surg. 2017;1(1):18–27.
Bolunduț AC, Lazea C, Mihu CM. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects—A Narrative Review. Children. 2023;10(5):812. DOI: https://doi.org/10.3390/children10050812
Spielmann N, Miller G, Oprea T, others. Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. Nat Cardiovasc Res. 2022;1:157–73. DOI: https://doi.org/10.1038/s44161-022-00018-8
Sophie E, Athni T, Mitchell M, Zhou X, Chiang S, Lee S. The impact of ambient and wildfire air pollution on rhinosinusitis and olfactory dysfunction. Curr Allergy Asthma Rep. 2023;23(12):665–73. DOI: https://doi.org/10.1007/s11882-023-01110-0
Khaiwal R, Chanana N, Mor S. Exposure to air pollutants and risk of congenital anomalies: A systematic review and meta-analysis. Sci Total Environ. 2021;765:142772. DOI: https://doi.org/10.1016/j.scitotenv.2020.142772
Jin S, Yoon S, Choi Y, Kang G, Choi S. Prenatal exposure to air pollutants and the risk of congenital heart disease: a Korean national health insurance database-based study. Dent Sci Rep. 2024;14:16940. DOI: https://doi.org/10.1038/s41598-024-63150-4
Ko J. Genetic Syndromes associated with congenital heart disease. Korean Circ J. 2015;45(5):357–61. DOI: https://doi.org/10.4070/kcj.2015.45.5.357
Sun J, Wang J, Yang J, Shi X, Li X, Chen S, et al. Association between maternal exposure to indoor air pollution and offspring congenital heart disease: a case–control study in East China. BMC Public Health. 2022;22:767. DOI: https://doi.org/10.1186/s12889-022-13174-0
Ellahham S, Khalouf A, El-Khazendar M, Dababo N, Manla Y. An overview of radiation-induced heart disease. Radiat Oncol J. 2022;40(2):89–102. DOI: https://doi.org/10.3857/roj.2021.00766
Lee K, Choi Y, Cho J, Lee H, Lee H, Park S, et al. Environmental and genetic risk factors of congenital anomalies: an umbrella review of systematic reviews and meta-analyses. J Korean Med Sci. 2021;36(28):56. DOI: https://doi.org/10.3346/jkms.2021.36.e183
Iqbal H, Rehman SU, Abdurrazaq AAK, Ali M, Haq FU. Frequency of Congenital Cardiac Conditions in Children Born to Diabetic Moms. Pak J Med Health Sci. 2023;17(6):378–9. DOI: https://doi.org/10.53350/pjmhs2023176378
Diniz M, Grilo L, Tocantins C, Falcao-Pires I, Pereira S. Made in the womb: Maternal programming of offspring cardiovascular function by an obesogenic womb. Metabolites. 2023;13(7):845. DOI: https://doi.org/10.3390/metabo13070845
Sylwestrzak O, Murlewska J, Sokołowski Ł, others. Increased maternal phenylalanine concentration may influence not only fetal heart structural development but also cardiovascular function and pulmonary tissue development in humans: a case report. Prenat Cardiol. 2023;2:44-8. DOI: https://doi.org/10.5114/pcard.2023.135555
Kilkenny K, Frishman W. Preeclampsia’s cardiovascular aftermath: A comprehensive review of consequences for mother and offspring. Cardiol Rev. 2024;2:10–1097. DOI: https://doi.org/10.1097/CRD.0000000000000639
Singh N, Jaiswal J, Sherwani N, Nagaria T, Khandwal O, Neral A, et al. Maternal and neonatal outcomes associated with COVID-19 infection in pregnant mothers admitted in tertiary care hospital in central state of India. Cureus. 2023;15(4):45-9. DOI: https://doi.org/10.7759/cureus.38235
Liu H, Ou J, Chen Y, Chen Q, Luo M, Wang T, et al. Association of Maternal Folate Intake and offspring MTHFD1 and MTHFD2 genes with congenital heart disease. Nutrients. 2023;15(16):3502. DOI: https://doi.org/10.3390/nu15163502
Harvey D, Baer R, Bandoli G, Chamber C, Jelliffe-Pawlowski L, Kumar S. Association of Alcohol Use Diagnostic Codes in Pregnancy and Offspring Conotruncal and Endocardial Cushion Heart Defects. J Am Heart Assoc. 2022;11(2):45-8. DOI: https://doi.org/10.1161/JAHA.121.022175
Wu L, Li N, Liu Y. Association between maternal factors and risk of congenital heart disease in offspring: A systematic review and meta-analysis. Matern Child Health J. 2023;27:29–48. DOI: https://doi.org/10.1007/s10995-022-03538-8
Lemieux A, Khalilipalandi S, Lauzon-Schnittka J, Tousignant A, Perreault L, Rego K, et al. Meta-analysis of risk factors for congenital heart disease–part 2: maternal medication, reproductive technologies, and familial and fetal factors. Can J Cardiol. 2024;40(12):2496–511. DOI: https://doi.org/10.1016/j.cjca.2024.09.011
Richter F, Kloster S, Wodschow K, others. Maternal exposure to arsenic in drinking water and risk of congenital heart disease in the offspring. Environ Int. 2022;160:107051. DOI: https://doi.org/10.1016/j.envint.2021.107051
Yu D, Feng Y, Yang L, Da M, Fan C, Wang S, et al. Maternal socioeconomic status and the risk of congenital heart defects in offspring: a meta-analysis of 33 studies. PLoS One. 2014;9(10):111056. DOI: https://doi.org/10.1371/journal.pone.0111056
Mamasoula C, Bigirumurame T, Chadwick T, Addor MC, Cavero-Carbonell C, Dias CM, et al. Maternal age and the prevalence of congenital heart defects in Europe, 1995–2015: A register-based study. Birth Defects Res. 2023;115(6):583–94. DOI: https://doi.org/10.1002/bdr2.2152
Pugnaloni F, Felici A, Corno A, Marino B, Versacci P, Putotto C. Gender differences in congenital heart defects: a narrative review. Transl Pediatr. 2023;12(9):1753–64. DOI: https://doi.org/10.21037/tp-23-260
Freilinger S, Andonian C, Beckmann J, Ewert P, Kaemmerer H, Lang N, et al. Differences in the experiences and perceptions of men and women with congenital heart defects: A call for gender-sensitive, specialized, and integrative care. Int J Cardiol Congenit Heart Dis. 2021;4:100185. DOI: https://doi.org/10.1016/j.ijcchd.2021.100185
Marcus B, Perez-Kersey P, Lee A, Jensen R, Dullanty B, Parrish P, et al. The Performance of Critical Congenital Heart Disease Screening in Rural Versus Urban Locations in the Northwest United States. J Pediatr Clin Pr. 2024;14:200120. DOI: https://doi.org/10.1016/j.jpedcp.2024.200120
Hu Z, Yuan X, Rao K, Zheng Z, Hu S. National trend in congenital heart disease mortality in China during 2003 to 2010: a population-based study. J Thorac Cardiovasc Surg. 2014;148(2):596–602. DOI: https://doi.org/10.1016/j.jtcvs.2013.08.067
Hussain R. Community perceptions of reasons for preference for consanguineous marriages in Pakistan. J Biosoc Sci. 1999;31:449–61. DOI: https://doi.org/10.1017/S0021932099004496
Ramegowda S, Ramachandra N. Parental consanguinity increases congenital heart diseases in South India. Ann Hum Biol. 2006;33(5):519–28. DOI: https://doi.org/10.1080/03014460600909349
Khalid Y, Ghina M, Fadi B, Fadi C, May K, Joseph R, et al. Consanguineous marriage and congenital heart defects: A case-control study in the neonatal period. Am J Med Genet A. 2006;140:1524–30. DOI: https://doi.org/10.1002/ajmg.a.31309
Dong W, Kaymakcalan H, Jin S, Diab N, Tanıdır C, Yalcin A, et al. Mutation spectrum of congenital heart disease in a consanguineous Turkish population. Mol Genet Genomic Med. 2022;10(6):1944. DOI: https://doi.org/10.1002/mgg3.1944
Gev D, Roguin N, Freundlich E. Consanguinity and congenital heart disease in the rural Arab population in northern Israel. Hum Hered. 1986;36(4):213–7. DOI: https://doi.org/10.1159/000153628
Hartman R, Rasmussen S, Botto L, others. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32(8):1147–57. DOI: https://doi.org/10.1007/s00246-011-0034-5
Richards A, Garg V. Genetics of Congenital Heart Disease. Curr Cardiol Rev. 2010;6(2):91–7. DOI: https://doi.org/10.2174/157340310791162703
Lahm H, Jia M, Dreßen M, others. Congenital heart disease risk loci identified by genome-wide association study in European patients. J Clin Invest. 2021;131(2):141837. DOI: https://doi.org/10.1172/JCI141837
Akiel M. The genetic architecture behind congenital heart disease: a review of genetic and epigenetic factors. J Nat Sci Med. 2022;5(3):210–20. DOI: https://doi.org/10.4103/jnsm.jnsm_126_21
Lin S, Shi S, Lu J. Contribution of genetic variants to congenital heart defects in both singleton and twin fetuses: a Chinese cohort study. Mol Cytogenet. 2024;17(1):2. DOI: https://doi.org/10.1186/s13039-023-00664-y
Unolt M, Calcagni G, Putotto C, Versacci P, Digilio M, Marino B. Congenital heart disease and cardiovascular abnormalities associated with 22q11.2 deletion syndrome. In: The Chromosome 22q112 Deletion Syndrome. Academic Press; 2022: 78–100. DOI: https://doi.org/10.1016/B978-0-12-816047-3.00016-2