The challenges of managing acute myeloid leukemia in pediatric patients: a review of current treatment strategies
DOI:
https://doi.org/10.18203/2320-6012.ijrms20251423Keywords:
Pediatric AML, FLT3 inhibitors, Immunotherapy, Hematopoietic stem cell transplantation, Precision medicineAbstract
Acute myeloid leukemia (AML) in pediatric patients presents with complex pathophysiology but a diverse treatment response and so is a difficult disease to treat. Despite substantial progress in genetic profiling of the diseases and precision medicine as well as targeted therapies, pediatric AML continues to be a significant cause of loss of life to cancer in children. Intensive chemotherapy, hematopoietic stem cell transplantation (HSCT), and FLT3 inhibitor are most of the treatment strategies used so far. However, therapeutic efforts are complicated by the high risk of relapse of certain patient subtypes and disease genetic heterogeneity, as well as continually rising incidence of resistance. Novel insight in the field of immunotherapy such as monoclonal antibodies, CAR-T cell therapy, and conjugation of FLT3 inhibitor in therapy hold promise for improved efficacy and decreased toxicity in the recent past. Nevertheless, conventional therapy of pediatric AML is still not an option for these pediatric AML patients with high risk genetic mutation (TP53), so new paradigms in treatment of pediatric AML are required. Then, the current treatment strategies for high risk pediatric AML are reviewed, the challenges in the management of the disease are discussed, and how emerging treatments may improve survival are discussed. The outcomes of genetic mutations, treatment protocols and reviewed combined advantages of current clinical trials is included and made available as valuable insights in pediatric AML treatment on this paper.
Metrics
References
Bhansali RS, Pratz KW, Lai, C. Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol. 2023;16(1):29. DOI: https://doi.org/10.1186/s13045-023-01424-6
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The battlefield of chemotherapy in pediatric cancers. Cancers (Basel). 2023;15(7):1963. DOI: https://doi.org/10.3390/cancers15071963
Testi AM, Moleti ML, Angi A, Bianchi S, Barberi W, Capria S. Pediatric autologous hematopoietic stem cell transplantation: Safety, efficacy, and patient outcomes. Pediatr Heal Med Therapeut. 2023;14:197-215. DOI: https://doi.org/10.2147/PHMT.S366636
Fathi AT, Chen YB. The role of FLT3 inhibitors in the treatment of FLT3-mutated acute myeloid leukemia. Eur J Haematol. 2017;98(4):330-6. DOI: https://doi.org/10.1111/ejh.12841
Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020;111(2):312-22. DOI: https://doi.org/10.1111/cas.14274
Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The bone marrow microenvironment mechanisms in acute myeloid leukemia. Front Cell Develop Biol. 2021;9:764698. DOI: https://doi.org/10.3389/fcell.2021.764698
Rafiq N, Khan MH, Sahibzada M, Khan SA, Syamprabha VA, Ullah N, et al. Recent developments and challenges in the treatment of acute leukemia and myelodysplastic syndromes: A systematic review. Cureus, 2024;16(10):e72599. DOI: https://doi.org/10.7759/cureus.72599
Rubio P, Campos B, Digiorge JA, Gallego MS, Medina A, Rossi JG, et al. NPM1, FLT3, and CEBPA mutations in pediatric patients with AML from Argentina: Incidence and prognostic value. Int J Hematol. 2016;104(5):582-90. DOI: https://doi.org/10.1007/s12185-016-2064-5
Shannon R. Monoclonal antibodies and immunotherapy for pediatric Acute myeloid leukemia: Current trends. Blood Adv. 2021.
Derwich K, Mitkowski D, Skalska-Sadowska J. Acute myeloid leukemia in pediatric patients: A review about current diagnostic and treatment approaches. In IntechOpen. 2018. DOI: https://doi.org/10.5772/intechopen.70937
Tseng S, Lee ME, Lin PC. A review of childhood acute myeloid leukemia: Diagnosis and novel treatment. Pharmaceuticals (Basel). 2023;16(11):1614. DOI: https://doi.org/10.3390/ph16111614
Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021;11(1):41. DOI: https://doi.org/10.1038/s41408-021-00425-3
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. DOI: https://doi.org/10.1182/blood-2016-03-643544
Sakaguchi M, Yamaguchi H, Kuboyama M, Najima Y, Usuki K, Ueki T, et al. Significance of FLT3-Tyrosine Kinase Domain mutation as a prognostic factor for acute myeloid leukemia. Int J Hematol. 2019;110(5):566-74. DOI: https://doi.org/10.1007/s12185-019-02720-z
Bazinet A, Assouline S. A review of FDA-approved acute myeloid leukemia therapies beyond “7 + 3”. Expert Rev Hematol. 2021;14(3):185-97. DOI: https://doi.org/10.1080/17474086.2021.1875814
Koga S, Du W, Yang G, Zhang L. Molecular testing of FLT3 mutations in hematolymphoid malignancies in the era of next-generation sequencing. J Clin Translational Pathol. 2025;5(1):30-40. DOI: https://doi.org/10.14218/JCTP.2025.00008
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA: A Cancer J Clin. 2021;71(1):7-33. DOI: https://doi.org/10.3322/caac.21654
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia. 2019;33(2):299-312. DOI: https://doi.org/10.1038/s41375-018-0357-9
Todde G, Friedman R. Activation and inactivation of the FLT3 kinase: Pathway intermediates and the free energy of transition. J Physical Chemistry B. 2019;123(19):5385-94. DOI: https://doi.org/10.1021/acs.jpcb.9b01567
Nitika WJ, Hui AM. Role of biomarkers in FLT3 AML. Cancers. 2022;14(5):1164. DOI: https://doi.org/10.3390/cancers14051164
Kazi JU, Rönnstrand L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol Rev. 2019;99(3):1433-66. DOI: https://doi.org/10.1152/physrev.00029.2018