Feasibility and evaluation of an automated software module for routine image-guided radiotherapy quality assurance: a clinical implementation and comparative study
DOI:
https://doi.org/10.18203/2320-6012.ijrms20252380Keywords:
Automation, IGRT, Quality assurance, EfficiencyAbstract
Background: Image-guided radiotherapy (IGRT) has revolutionized precision in radiotherapy treatments by ensuring accurate patient positioning and real-time anatomical localization. This study explores the clinical feasibility and utility of implementation of a web-based automated quality assurance (QA) software, for routine IGRT QA procedures.
Methods: Periodic IGRT QA procedures were conducted on a Varian TrueBeam linear accelerator (v2.5) with a web-based automated QA software platform. The kilovoltage (kV), megavoltage (MV), and cone beam computed tomography (CBCT) imaging systems were evaluated using appropriate phantoms namely, automated software company provided kV and MV phantom, Varian 6 Dot Marker, Varian MPC, TOR 18FG, Las Vegas, and Catphan® 604. Parameters such as geometric accuracy, spatial resolution, uniformity, low-contrast detectability, noise, slice thickness, and HU constancy were evaluated.
Results: The QA metrics met predefined baselines or AAPM TG-142 tolerances. The full QA process, including setup and analysis, was completed in 40–45 minutes. The software ensured consistent results with minimal manual intervention.
Conclusions: AQMS significantly improves the efficiency and consistency of routine IGRT QA. Its integration into clinical practice streamlines workflows and ensures compliance with QA standards, making it highly suitable for busy radiotherapy centers.
Metrics
References
Bissonnette JP, Balter PA, Lei D, Langen KM, Lovelock DM, Miften M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys. 2012;39(4):1946-63. DOI: https://doi.org/10.1118/1.3690466
Clivio A, Vanetti E, Nicolini G, Giaj-Levra N, Fogliata A, Cozzi L, et al. Evaluation of the Machine Performance Check application for TrueBeam Linac. Radiat Oncol. 2015;10(1):97. DOI: https://doi.org/10.1186/s13014-015-0381-0
Eckhause T, Al-Hallaq H, Ritter T, DeMarco J, Farrey K, Pawlicki T, et al. Automating linear accelerator quality assurance. Med Phys. 2015;42(12):6074-83. DOI: https://doi.org/10.1118/1.4931415
Rafic M, Ravindran P. Evaluation of on-board imager cone beam CT Hounsfield units for treatment planning using rigid image registration. J Cancer Res Ther. 2015;11(4):690-6. DOI: https://doi.org/10.4103/0973-1482.146087
Klein EE, Hanley J, Bayouth J, Yin FF, Simon WE, Dresser S, et al. Task Group 142 report: Quality assurance of medical accelerators. Med Phys. 2009;36(9):4197-212. DOI: https://doi.org/10.1118/1.3190392
Hanley J, Klein EE, Bayouth J, Chen J, McCullough E, Yaldo D, et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys. 2021;48(7):e830-49. DOI: https://doi.org/10.1002/mp.14992
Dhoundiyal M, Sharma M, Singh D, Kumar S, Agarwal S, Gupta R, et al. Validation and efficiency evaluation of automated quality assurance software SunCHECK™ Machine for mechanical and dosimetric quality assurance. J Med Phys. 2024;49(2):311-5. DOI: https://doi.org/10.4103/jmp.jmp_158_23
Bonanno E, Barbagallo M, Romano A, Fiorino C, Oliviero D, Puglisi R, et al. Use of an automated software module for monthly routine machine QA tests. J Instrum. 2023;18(07):T07010. DOI: https://doi.org/10.1088/1748-0221/18/07/T07010
Yoo S, Yin FF, Kim J, Lee S, Woo MK, Chung J, et al. A quality assurance program for the on-board imagers. Med Phys. 2006;33(9):3451-63. DOI: https://doi.org/10.1118/1.2362872
Chang Z, Bowsher J, Cai J, Yoo S, Wang Z, Adamson J, et al. Imaging system QA of a medical accelerator, Novalis Tx, for IGRT per TG 142: our 1 year experience. Med Phys. 2014;41(8):081708.
Stanley DN, Papanikolaou N, Gutiérrez AN. An evaluation of the stability of image-quality parameters of Varian on-board imaging (OBI) and EPID imaging systems. J Appl Clin Med Phys. 2014;15(4):4765.
Stambaugh C, Yancey J, Shukla U, Melhus C, Stambaugh N. Daily quality assurance efficiency evaluation using SunCHECK Machine and machine performance check. Cureus. 2023;15:e35695. DOI: https://doi.org/10.7759/cureus.35695
Jenkins CH, Naczynski DJ, Yu SJ, Yang Y, Xing L. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging. Med Phys. 2014;41(7):072802.
Martin G, Fogarty K, Egleston D, Howard L, Gilmore M. PO-1720 SunCHECK Machine, an automated QA software solution: A centre’s 5-year experience evaluation. Radiother Oncol. 2021;161:S1445-6. DOI: https://doi.org/10.1016/S0167-8140(21)08171-8