Gut microbiota changes and its potential relations with thyroid disorders

Authors

  • Paula A. Vasconez Ministry of Public Health, Quito, Ecuador
  • Yesenia L. Rumipamba Ministry of Public Health, Quito, Ecuador
  • Maria Paula Pineida Ministry of Public Health, Quito, Ecuador
  • Paulina Rodriguez Ministry of Public Health, Quito, Ecuador
  • Yaritza Cardenas Vargas Ministry of Public Health, Quito, Ecuador
  • Esteban I. Maggi Ministry of Public Health, Quito, Ecuador
  • Paul Aguirre Cifuentes Ministry of Public Health, Quito, Ecuador
  • Juan J. Riofrio Ministry of Public Health, Quito, Ecuador

DOI:

https://doi.org/10.18203/2320-6012.ijrms20253206

Keywords:

Gut microbiota, Thyroid disease, Hashimoto's thyroiditis, Thyroid nodules, Thyroid cancer

Abstract

The human intestinal flora is composed of more than 1200 species of anaerobic and aerobic bacteria, along with bacteriophages, viruses and fungi, essential for several processes including digestive and non-digestive, being of vital importance for health, including digestive balance and immunological, hormonal and metabolic homeostasis. Micronutrients, generally trace elements (copper, iodine, iron, selenium, zinc) and vitamins (A, C, D and E), interact with the bacterial flora to generate an adequate immunological metabolism of the host. Multiple studies on the functioning of the gut microbiota (GM) have revealed an association between microbiota alterations and various pathological disorders, such as encephalitis due to antibodies against the N-methyl-D-aspartate receptor (NMDAR), anxiety, depression, early-onset cancer, type 1 diabetes, and type 2 diabetes. According to recent studies, the thyroid microbiota (TM) could play a fundamental role in the triggering of thyroid gland diseases, among which autoimmune diseases play an important role. Not only environmental triggers and predisposing genetic background cause autoaggressive damage, which affects the cellular and humoral networks of the immune system, but the GM interacts with distant organs through signals that may be part of the bacteria themselves or their metabolites. The objective of this review is to describe the current knowledge about the microbiota in the metabolism of thyroid hormones and the pathogenesis of thyroid diseases, as well as its participation in the appearance of benign nodules. and papillary cancer.

 

Metrics

Metrics Loading ...

References

Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26(7):563-74. DOI: https://doi.org/10.1016/j.tim.2017.11.002

Danping Z, Timur L, Eran E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492-506. DOI: https://doi.org/10.1038/s41422-020-0332-7

Brown Eric M, Kenny Douglas J, Xavier Ramnik J. Gut microbiota regulation of T cells during inflammation and autoimmunity. Ann Rev Immunol. 2019;37(1):599-624. DOI: https://doi.org/10.1146/annurev-immunol-042718-041841

Gang W, Shuo H, Yuming W, Shuang C, Haitao Y, Hongbing L, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci. 2019;76(20):3917-37. DOI: https://doi.org/10.1007/s00018-019-03190-6

Maayan L, Thaiss Christoph A, Eran E. Metabolites: messengers between the microbiota and the immune system. Genes Dev. 2016;30 (14):1589-97. DOI: https://doi.org/10.1101/gad.284091.116

Qinghui M, Jay K, Reilly Christopher M, Luo Xin M, Du J-F. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598. DOI: https://doi.org/10.3389/fimmu.2017.00598

Dai D, Yang Y, Yang Y, Dang T, Xiao J, Wang W, et al. Alterations of thyroid microbiota across different thyroid microhabitats in patients with thyroid carcinoma. J Transl Med. 2021;19(1):488. DOI: https://doi.org/10.1186/s12967-021-03167-9

Samimi H, Haghpanah V. Gut microbiome and radioiodine-refractory papillary thyroid carcinoma pathophysiology. Trends Endocrinol Metab. 2020;31(9):627-30. DOI: https://doi.org/10.1016/j.tem.2020.03.005

Feng J, Zhao F, Sun J, Lin B, Zhao L, Liu Y, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients. Int J Cancer. 2019;144(11):2728-45. DOI: https://doi.org/10.1002/ijc.32007

Jiang W, Lu G, Gao D, Lv Z, Li D. The relationships between the gut microbiota and its metabolites with thyroid diseases. Front Endocrinol (Lausanne). 2022;13:943408. DOI: https://doi.org/10.3389/fendo.2022.943408

Virili C, Stramazzo I, Bagaglini MF, Carretti AL, Capriello S, Romanelli F, et al. The relationship between thyroid and human-associated microbiota: A systematic review of reviews. Rev Endocr Metab Disord. 2024;25(1):215-37. DOI: https://doi.org/10.1007/s11154-023-09839-9

Ma J, Sun L, Liu Y, Ren H, Shen Y, Bi F, et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiol. 2020;20(1):82. DOI: https://doi.org/10.1186/s12866-020-01739-1

Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021;371(6536):eabc4552. DOI: https://doi.org/10.1126/science.abc4552

Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med. 2023;21(1):66. DOI: https://doi.org/10.1186/s12916-023-02761-6

Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80-6. DOI: https://doi.org/10.1126/science.aaa4972

Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene. 2023;42(45):3289-302. DOI: https://doi.org/10.1038/s41388-023-02836-x

Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am. 2012;96(2):269-81. DOI: https://doi.org/10.1016/j.mcna.2012.01.012

Divi RL, Chang HC, Doerge DR. Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol. 1997;54(10):1087-96. DOI: https://doi.org/10.1016/S0006-2952(97)00301-8

Otun J, Sahebkar A, Östlundh L, Atkin SL, Sathyapalan T. Systematic review and meta-analysis on the effect of soy on thyroid function. Sci Rep. 2019;9(1):1-9. DOI: https://doi.org/10.1038/s41598-019-40647-x

Sathyapalan T, Dawson AJ, Rigby AS, Thatcher NJ, Kilpatrick ES, Atkin SL. The effect of phytoestrogen on thyroid in subclinical hypothyroidism: Randomized, double blind, crossover study. Front Endocrinol (Lausanne). 2018;9:531. DOI: https://doi.org/10.3389/fendo.2018.00531

Ionescu RF, Enache RM, Cretoiu SM, Gaspar BS. Gut microbiome changes in gestational diabetes. Int J Mol Sci. 2022;23(21):12839. DOI: https://doi.org/10.3390/ijms232112839

Ren Y, Zeng Y, Wu Y, Yu J, Zhang Q, Xiao X. The role of gut Microbiota in gestational diabetes mellitus affecting intergenerational glucose metabolism: Possible mechanisms and interventions. Nutrients. 2023;15(21):4551. DOI: https://doi.org/10.3390/nu15214551

Beane KE. Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Applied Biological Chemistry. 2021;64:36. DOI: https://doi.org/10.1186/s13765-021-00605-6

Hadadi N, Berweiler V, Wang H, Trajkovski M. Intestinal microbiota as a route for micronutrient bioavailability. Endocrine Metabol Res. 2021;20:100285. DOI: https://doi.org/10.1016/j.coemr.2021.100285

Barra NG, Anhê FF, Cavallari JF, Singh AM, Chan DY, Schertzer JD. Micronutrients impact the gut microbiota and blood glucose. J Endocrinol. 2021;250(2):R1-21. DOI: https://doi.org/10.1530/JOE-21-0081

Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020;12(2):381. DOI: https://doi.org/10.3390/nu12020381

Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Vol. 8, Frontiers in Nutrition. Frontiers Media S.A. 2021. DOI: https://doi.org/10.3389/fnut.2021.685317

Skalny AV, Aschner M, Lei XG, Gritsenko VA, Santamaria A, Alekseenko SI, et al. Gut microbiota as a mediator of essential and toxic effects of zinc in the intestines and other tissues. Int J Mol Sci. 2021;22(23):13074. DOI: https://doi.org/10.3390/ijms222313074

Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res. 2021;95:35-53. DOI: https://doi.org/10.1016/j.nutres.2021.09.001

Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B-Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res. 2020;64(18):1-10. DOI: https://doi.org/10.1002/mnfr.202000426

Bellerba F, Muzio V, Gnagnarella P, Facciotti F, Chiocca S, Bossi P, et al. The association between Vitamin D and gut microbiota: A systematic review of human studies. Nutrients. 2021;13(10):3378. DOI: https://doi.org/10.3390/nu13103378

Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of Vitamin K in Intestinal Health. Front Immunol. 2022;12(1):1-19. DOI: https://doi.org/10.3389/fimmu.2021.791565

Downloads

Published

2025-09-29

How to Cite

Vasconez, P. A., Rumipamba, Y. L., Pineida, M. P., Rodriguez, P., Vargas, Y. C., Maggi, E. I., Cifuentes, P. A., & Riofrio, J. J. (2025). Gut microbiota changes and its potential relations with thyroid disorders. International Journal of Research in Medical Sciences, 13(10), 4445–4451. https://doi.org/10.18203/2320-6012.ijrms20253206

Issue

Section

Review Articles