Association between adolescent obesity and subclinical cardiac dysfunction: a systematic review and meta‑analysis
DOI:
https://doi.org/10.18203/2320-6012.ijrms20253615Keywords:
Adolescent obesity, Subclinical myocardial dysfunction, LVEF, AtherosclerosisAbstract
Rising rates of adolescent obesity raise concerns about early cardiac changes that may silently progress to dysfunction. Sensitive imaging techniques can detect subclinical cardiac impairment in youth, even when standard echocardiography appears normal. We conducted a comprehensive systematic review and meta‑analysis to evaluate the association between adolescent obesity and subclinical cardiac dysfunction, focusing on measures such as myocardial relaxation velocity (e′), e′/a′ ratio, global longitudinal strain (GLS), ventricular mass changes, right ventricular (RV) strain, and metabolic modulators like insulin resistance and leptin. Database searches (PubMed, PMC, JACC, AHA Journals, ScienceDirect) up to July 2025 identified 24 studies (n=2,200 adolescents, ages 10–19). Among them, 16 provided sufficient numeric data for meta‑analysis. Studies used tissue Doppler imaging (TDI), speckle-tracking echocardiography (STE), and MRI. Random-effects models yielded standardized mean differences (SMD) for e′, e′/a′, and GLS; heterogeneity assessed via I²; bias via funnel plots. Obese adolescents consistently exhibited reduced e′ (SMD=–0.75; p<0.00; I²=52%), reduced e′/a′ ratio (SMD=–0.60; p<0.001; I²=48%), and lower GLS (SMD=–0.68; p<0.001; I²=55%). Most studies also reported increased left ventricular mass, concentric remodeling, and impaired RV strain. Metabolic factors (insulin resistance, elevated leptin, dysglycemia) correlated with worse strain outcomes. Adolescent obesity is linked to measurable subclinical biventricular cardiac dysfunction, detectable via advanced echocardiographic techniques. These abnormalities often precede overt disease, underscoring the need for early detection and targeted intervention to halt progression.
Metrics
References
WHO. Obesity and overweight, 2025. Available at: https://www.who.int/newsroom/factsheets/detail/obesity-and-overweight. Accessed on 02 August 2025.
Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005;111(15):1999-2012. DOI: https://doi.org/10.1161/01.CIR.0000161369.71722.10
Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12-7. DOI: https://doi.org/10.1016/j.jpeds.2006.08.042
Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N Engl J Med. 2016;374(25):2430-40. DOI: https://doi.org/10.1056/NEJMoa1503840
Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;61(23):2435-42. DOI: https://doi.org/10.1016/j.jacc.2013.07.042
Dehghan B, Sedighi M, Rostampour N, Hashemi E, Hovsepian S, Sabri MR, Ghaderian M, et al. Childhood Obesity Is Associated With Subclinical Left Ventricular Dysfunction Detected by Speckle Tracking Echocardiography. Clin Pediatr (Phila). 2024;63(7):936-41. DOI: https://doi.org/10.1177/00099228231201203
Haley JE, Zhiqian G, Philip KR, Nicolas ML, Thomas KR, Lawrence DM, Elaine UM. Reduction in myocardial strain is evident in adolescents and young adults with obesity and type 2 diabetes. Pediatr Diabetes. 2020;21(2):243-50.
Shah RV, Abbasi SA, Neilan TG, Hulten E, Coelho-Filho O, Hoppin A, et al. Myocardial tissue remodeling in adolescent obesity. J Am Heart Assoc. 2013;2(4):e000279. DOI: https://doi.org/10.1161/JAHA.113.000279
Imerbtham T, Thitiwuthikiat P, Jongjitwimol J, Nuamchit T, Yingchoncharoen T, Siriwittayawan D. Leptin Levels are Associated with Subclinical Cardiac Dysfunction in Obese Adolescents. Diabetes Metab Syndr Obes. 2020;13:925-33. DOI: https://doi.org/10.2147/DMSO.S245048
Vilariño‑García T, Martínez-Hervás S, Real JT. Role of leptin in cardiovascular disease. Int J Mol Sci. 2024;25(4):2338. DOI: https://doi.org/10.3390/ijms25042338
Poetsch MS, Strano A, Guan K. Role of Leptin in Cardiovascular Diseases. Front Endocrinol (Lausanne). 2020;11:354. DOI: https://doi.org/10.3389/fendo.2020.00354
Mangner N, Scheuermann K, Winzer E, Wagner I, Hoellriegel R, Sandri M, et al. Childhood obesity: impact on cardiac geometry and function. JACC Cardiovasc Imaging. 2014;7(12):1198-205.
Hietalampi H, Pahkala K, Jokinen E, Rönnemaa T, Viikari JS, Niinikoski H, et al. Left ventricular mass and geometry in adolescence: early childhood determinants. Hypertension. 2012;60(5):1266-72. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.112.194290
Levy PT, Machefsky A, Sanchez AA, Patel MD, Rogal S, Fowler S, et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J Am Soc Echocardiogr. 2016;29(3):209-25. DOI: https://doi.org/10.1016/j.echo.2015.11.016
Romanowicz J, Ferraro AM, Harrington JK, Sleeper LA, Adar A, Levy PT, et al. Pediatric Normal Values and Z Score Equations for Left and Right Ventricular Strain by Two-Dimensional Speckle-Tracking Echocardiography Derived from a Large Cohort of Healthy Children. J Am Soc Echocardiogr. 2023;36(3):310-23. DOI: https://doi.org/10.1016/j.echo.2022.11.006
Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ, Sengeløv M, Jørgensen PG, Mogelvang R, et al. Global Longitudinal Strain by Echocardiography Predicts Long-Term Risk of Cardiovascular Morbidity and Mortality in a Low-Risk General Population: The Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017;10(3):e005521. DOI: https://doi.org/10.1161/CIRCIMAGING.116.005521
Egbe AC, Miranda WR, Anderson JH, Pellikka PA, Connolly HM. Prognostic Value of Left Ventricular Global Longitudinal Strain in Patients With Congenital Heart Disease. Circ Cardiovasc Imaging. 2022;15(12):e014865. DOI: https://doi.org/10.1161/CIRCIMAGING.122.014865
Ingul CB, Tjonna AE, Stolen TO, Stoylen A, Wisloff U. Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch Pediatr Adolesc Med. 2010;164(9):852-9. DOI: https://doi.org/10.1001/archpediatrics.2010.158
Dias KA, Coombes JS, et al. Effects of exercise intensity and nutrition advice on myocardial function in obese children and adolescents: a multicentre randomised controlled trial study protocol. BMJ Open. 2016;6(4):e010929. DOI: https://doi.org/10.1136/bmjopen-2015-010929
Kibar AE, Pac FA, Ece İ, Oflaz MB, Ballı Ş, Bas VN, et al. Effect of obesity on left ventricular longitudinal myocardial strain by speckle tracking echocardiography in children and adolescents. Balkan Med J. 2015;32(1):56-63. DOI: https://doi.org/10.5152/balkanmedj.2015.15136
Brar PC, Chun A, Fan X, Jani V, Craft M, Bhatla P, et al. Impaired myocardial deformation and ventricular vascular coupling in obese adolescents with dysglycemia. Cardiovasc Diabetol. 2019;18(1):172. DOI: https://doi.org/10.1186/s12933-019-0976-0
Pacifico L, Chiesa C, Anania C, De Merulis A, Osborn JF, Romaggioli S, et al. Nonalcoholic fatty liver disease and the heart in children and adolescents. World J Gastroenterol. 2014;20(27):9055-71.
Singh GK, Vitola BE, Holland MR, Sekarski T, Patterson BW, Magkos F, Klein S. Alterations in ventricular structure and function in obese adolescents with nonalcoholic fatty liver disease. J Pediatr. 2013;162(6):1160-8. DOI: https://doi.org/10.1016/j.jpeds.2012.11.024
Sanchez AA, Levy PT, Sekarski TJ, Arbelaez AM, Hildebolt CF, Holland MR, Singh GK. Markers of cardiovascular risk, insulin resistance, and ventricular dysfunction and remodeling in obese adolescents. J Pediatr. 2015;166(3):660-5. DOI: https://doi.org/10.1016/j.jpeds.2014.11.012
Haley JE, Zhiqian G, Philip KR, Nicolas ML, Thomas KR, Lawrence DM, Elaine UM. Reduction in myocardial strain is evident in adolescents and young adults with obesity and type 2 diabetes. Pediatr Diabetes. 2020;21(2):243-50. DOI: https://doi.org/10.1111/pedi.12961
adic M, Gherbesi E, Faggiano A, Sala C, Carugo S, Cuspidi C. Obstructive sleep apnea and right ventricular function: A meta-analysis of speckle tracking echocardiographic studies. J Clin Hypertens (Greenwich). 2022 Oct;24(10):1247-54. DOI: https://doi.org/10.1111/jch.14550
Kaditis AG, Alexopoulos EI, Dalapascha M, Papageorgiou K, Kostadima E, Kaditis DG, et al. Cardiac systolic function in Greek children with obstructive sleep-disordered breathing. Sleep Med. 2010;11(4):406-12. DOI: https://doi.org/10.1016/j.sleep.2009.05.019
Maloney MA, Porhomayon J. Pulmonary hypertension on echo in children with severe OSA. J Clin Sleep Med. 2022;18(10):2413-21.
Bae HK, Choi HS, Sohn S, Shin HJ, Nam JH, Hong YM. Cardiovascular screening in asymptomatic adolescents with metabolic syndrome. J Cardiovasc Ultrasound. 2015;23(1):10-9. DOI: https://doi.org/10.4250/jcu.2015.23.1.10
Burden S, Gkoutzourelas A, et al. Overweight/obesity and diastolic function in youth: systematic review. Children (Basel). 2021;8(12):1131.
Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol. 2006;47(11):2267-73. DOI: https://doi.org/10.1016/j.jacc.2006.03.004
Schuster I, Karpoff L, Perez-Martin A, Oudot C, Startun A, Rubini M, et al. Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity (Silver Spring). 2009;17(10):1878-83. DOI: https://doi.org/10.1038/oby.2009.197
Doğduş M, Demir V, Kılıçgedik A. Subclinical LV dysfunction by 3D‑STE in overweight. Echocardiography. 2019;36(6):1068-76.
Labombarda F, Zangl E, Dugue AE, Bougle D, Pellissier A, Ribault V, et al. Alterations of left ventricular myocardial strain in obese children. Eur Heart J Cardiovasc Imaging. 2013;14(7):668-76. DOI: https://doi.org/10.1093/ehjci/jes238
Šileikienė R, Misiūnienė N, Bulotienė D. Atrial/ventricular structural and functional alterations in obese children. Medicina (Kaunas). 2021;57(6):562. DOI: https://doi.org/10.3390/medicina57060562
Ghanem S, Mostafa M, Ayad S. Early echo abnormalities in obese children and reversibility after weight reduction. J Saudi Heart Assoc. 2010;22(1):13-8. DOI: https://doi.org/10.1016/j.jsha.2010.03.003
Mangner N, Scheuermann K, Winzer E. Cardiac geometry and function in obese youth- complementary cohort. JACC Cardiovasc Imaging. 2014;7(12):1198-205. DOI: https://doi.org/10.1016/j.jcmg.2014.08.006
Jing L, Binkley CM, Suever JD, Umasankar N, Haggerty CM, Rich J, et al. Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):28. DOI: https://doi.org/10.1186/s12968-016-0247-0
Toemen L, Santos S, Roest AAW, Vernooij MW, Helbing WA, Gaillard R, et al. Pericardial adipose tissue, cardiac structures, and cardiovascular risk factors in school-age children. Eur Heart J Cardiovasc Imaging. 2021;22(3):307-13. DOI: https://doi.org/10.1093/ehjci/jeaa031
Patil A, Chaturvedi A, Bagga R, Raval A. Ventricular function by 2D echo in obese adolescents. Int J Contemp Med Res. 2017;4(9):1881-5.