Chronic myeloid leukemia from pathophysiology to treatment-free remission: new perspectives
DOI:
https://doi.org/10.18203/2320-6012.ijrms20253211Keywords:
BCR-ABL1, Chronic myeloid leukemia, Hematology, Tyrosine kinase inhibitors, Treatment-free remissionAbstract
Chronic myeloid leukemia (CML) is one of the most common leukaemia’s occurring in the adult population. The course of CML is divided into three phases: the chronic phase, the acceleration phase and the blast phase. CML is a chronic myeloproliferative neoplasm characterized by the presence of the chimeric BCR-ABL1 gene, resulting from the chromosomal translocation t (9;22) (q34;q11), which encodes a constitutively active tyrosine kinase. The advent of tyrosine kinase inhibitors (TKIs) has revolutionized the management of CML, significantly improving patient survival and quality of life. Recent studies have shown that a subgroup of patients can maintain deep remission even after treatment discontinuation, a phenomenon known as treatment-free remission (TFR) . This narrative review synthesizes the current evidence on the pathophysiology of CML, therapeutic advances with TKIs and the clinical and prognostic criteria associated with TFR, providing an integrated view that can guide clinical practice and future research.
Metrics
References
Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370(9584):342-50. DOI: https://doi.org/10.1016/S0140-6736(07)61165-9
Nicholson E, Holyoake T. The chronic myeloid leukemia stem cell. Clin Lymphoma Myeloma. 2009;9(4):376–81. DOI: https://doi.org/10.3816/CLM.2009.s.037
Frazer R, Irvine AE, McMullin MF. Chronic myeloid leukaemia in the 21st century. Ulster Med J. 2007;76(1):8–17.
Oka S, Muroi K, Mori M. Prediction of response to imatinib in patients with chronic myelogenous leukemia by flow cytometric analysis of bone marrow blastic cell phenotypes. Leuk Lymphoma. 2009;50(2):290–3. DOI: https://doi.org/10.1080/10428190802627598
Kang ZJ, Liu YF, Xu LZ. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2022;35:48. DOI: https://doi.org/10.1186/s40880-016-0108-0
Holmberg M. Is the primary event in radiation-induced chronic myelogenous leukemia the induction of the t(9;22) translocation. Leuk Res. 1992;16(4):333–6. DOI: https://doi.org/10.1016/0145-2126(92)90134-S
Ismail SI, Naffa RG, Yousef AMF, Ghanim MT. Incidence of bcr-abl fusion transcripts in healthy individuals. Mol Med Rep. 2014;9 (4):1271–6. DOI: https://doi.org/10.3892/mmr.2014.1951
Quintás-Cardama A, Cortes J. Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc. 2006;81(7):973-88. DOI: https://doi.org/10.4065/81.7.973
Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343-56. DOI: https://doi.org/10.1182/blood.V96.10.3343.h8003343_3343_3356
Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172-83. DOI: https://doi.org/10.1038/nrc1567
Koptyra M, Falinski R, Nowicki MO. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108(1):319-27. DOI: https://doi.org/10.1182/blood-2005-07-2815
Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-β-catenin signaling. Blood. 2013;121(10):1824–38. DOI: https://doi.org/10.1182/blood-2012-02-412890
Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254-64. DOI: https://doi.org/10.1172/JCI41246
Branford S, Kim DDH, Apperley JF, Eide CA, Mustjoki S, Ong ST, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835–50. DOI: https://doi.org/10.1038/s41375-019-0512-y
Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12):1595–606. DOI: https://doi.org/10.1182/blood-2016-09-696013
Holyoake TL, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999;94(6):2056–64. DOI: https://doi.org/10.1182/blood.V94.6.2056
Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy and monitoring. Am J Hematol. 2022;97(9):1236–56. DOI: https://doi.org/10.1002/ajh.26642
Onida F, Ball G, Kantarjian HM. Characteristics and outcome of patients with Philadelphia chromosome negative, bcr/abl negative chronic myelogenous leukemia. Cancer. 2002;95(8):1673–84. DOI: https://doi.org/10.1002/cncr.10832
Hoffmann VS, Baccarani M, Hasford J, Lindoerfer D, Burgstaller S, Sertic D. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European countries. Leukemia. 2015;29(6):1336–43. DOI: https://doi.org/10.1038/leu.2015.73
Wang SA, Hasserjian RP, Fox PS. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/ myeloproliferative neoplasms. Blood. 2014;123(17):2645–51. DOI: https://doi.org/10.1182/blood-2014-02-553800
Hochhaus A, Baccarani M, Silver RT. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. DOI: https://doi.org/10.1038/s41375-020-0776-2
Asnafi AA, Deris Zayeri Z, Shahrabi S, Zibara K, Vosughi T. Chronic myeloid leukemia with complex karyotypes: prognosis and therapeutic approaches. J Cell Physiol. 2019;234(5):5798–806. DOI: https://doi.org/10.1002/jcp.27505
Rinaldi I, Winston K. Chronic myeloid leukemia, from pathophysiology to treatment-free remission: a narrative literature review. J Blood Med. 2023:261-77. DOI: https://doi.org/10.2147/JBM.S382090
Haznedaroğlu İC, Kuzu I, Ilhan O. WHO 2016 definition of chronic myeloid leukemia and tyrosine kinase inhibitors. Turk J Hematol. 2020;37(1):42–7. DOI: https://doi.org/10.4274/tjh.galenos.2019.2019.0241
Arber DA, Orazi A, Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. DOI: https://doi.org/10.1182/blood-2016-03-643544
Andretta E, Costa C, Longobardi C. Potential approaches versus approved or developing chronic myeloid leukemia therapy. Front Oncol. 2022;11:801779. DOI: https://doi.org/10.3389/fonc.2021.801779
Simonsson B, Gedde-Dahl T, Markevärn B. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood. 2011;118(12):3228–35. DOI: https://doi.org/10.1182/blood-2011-02-336685
Rangel AL, Jorge JJ, Vargas PA. Oncocytic metaplasia in denture hyperplasia. Is it a rare occurrence. Oral Dis. 2002;8(4):227-8. DOI: https://doi.org/10.1034/j.1601-0825.2002.02849.x
Adank MA, Hes FJ, van Zelst-Stams WA, van den Tol MP, Seynaeve C. CHEK2-mutatie in Nederlandse borstkankerfamilies: uitbreiding van de genetische diagnostiek op borstkanker (CHEK2-mutation in Dutch breast cancer families: expanding genetic testing for breast cancer). Ned Tijdschr Geneeskd. 2015;159:8910.
Kujawski LA, Talpaz M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 2007;18(6):459-71.
Ansari S, Verma M. miRNA expression-based modulation: A new paradigm for the treatment of chronic myeloid leukemia. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2025:189366. DOI: https://doi.org/10.1016/j.bbcan.2025.189366
Kujawski LA, Talpaz M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 2007;18(6):459-71. DOI: https://doi.org/10.1016/j.cytogfr.2007.06.015
Talpaz M, Mercer J, Hehlmann R. The interferon-alpha revival in CML. Ann Hematol. 2015;94(2):195-207. DOI: https://doi.org/10.1007/s00277-015-2326-y
Oyekunle AA, Kroeger N, Zander AR. Allogeneic stem cell transplantation for chronic myeloid leukemia in the era of tyrosine kinase inhibitors. Ann Hematol. 2012;91(10):1541-57.
Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385(9976):1447. DOI: https://doi.org/10.1016/S0140-6736(13)62120-0
O’Brien SG, Guilhot F, Larson RA. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase CML. N Engl J Med. 2003;348(11):994-1004. DOI: https://doi.org/10.1056/NEJMoa022457
Saglio G. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9. DOI: https://doi.org/10.1056/NEJMoa0912614
Mahon FX. Discontinuation of imatinib in patients with CML who have maintained complete molecular remission for at least 2 years (STIM). Lancet Oncol. 2010;11(11):1029–35. DOI: https://doi.org/10.1016/S1470-2045(10)70233-3
Etienne G. Long-term follow-up of the French Stop Imatinib (STIM1) study. J Clin Oncol. 2017;35(3):298–305. DOI: https://doi.org/10.1200/JCO.2016.68.2914
Saussele S. Discontinuation of TKI therapy in CML (EURO-SKI). Lancet Oncol. 2018;19(6):747–57.
Saussele S. Discontinuation of TKI therapy in CML (EURO-SKI). Lancet Oncol. 2018;19(6):747–57. DOI: https://doi.org/10.1016/S1470-2045(18)30192-X
Ross DM. Durable treatment-free remission following frontline nilotinib (ENESTfreedom). J Cancer Res Clin Oncol. 2018;144(5):945–54. DOI: https://doi.org/10.1007/s00432-018-2604-x