Enhanced surgical planning with 3D modeling in pediatric surgical oncology: management of complex abdominal tumors in a low-income country
DOI:
https://doi.org/10.18203/2320-6012.ijrms20253619Keywords:
3D modeling, Pediatric surgery, Abdominal tumors, Surgical planning, Low-income countryAbstract
Three-dimensional (3D) modeling has emerged as a valuable tool in pediatric oncologic surgery, particularly for complex abdominal tumors where precise anatomical planning is critical. It enables enhanced surgical visualization, improved team communication, and more accurate estimation of vascular structures and adjacent organs, thereby increasing the safety and feasibility of extensive resections. We present six pediatric cases of complex abdominal tumors, including a NOS hepatic tumor, myofibroblastic tumor, cholangiocarcinoma, hepatoblastoma, neuroblastoma, and a Frantz-Gruber tumor, where 3D reconstruction and printing were employed to support preoperative planning and intraoperative navigation. All patients underwent contrast-enhanced thoracoabdominal CT, angiography, and 3D modeling due to tumor size, anatomical complexity, and vascular involvement. Additionally, we performed a literature review to contextualize the clinical value of 3D modeling in pediatric surgical oncology. Six patients underwent complete resections without complications. One patient was deemed unresectable after a detailed 3D evaluation, and only one patient presented a postoperative complication. The models were used to assess tumor boundaries, vascular proximity, and residual liver volume. They also improved interdisciplinary coordination and communication with families. 3D modeling facilitates individualized surgical planning, enabling more accurate, safer, and potentially curative interventions in patients with complex tumors. It enhances communication across the surgical team, supports medical education, and minimizes potential complications. As this technology becomes more accessible, it has the potential to significantly improve outcomes in pediatric surgical oncology.
Metrics
References
Losty PD, La Quaglia M, Sarnacki S, Fuchs J, Taguchi T, editors. Pediatric surgical oncology. 1st ed. Boca Raton: CRC Press; 2022. DOI: https://doi.org/10.1201/9781351166126
Meyers R, Hiyama E, Czauderna P, Tiao GM. Liver tumors in pediatric patients. Surg Oncol Clin N Am. 2020;29(1):1-15.
Lee AJ, Chun YS. Intrahepatic cholangiocarcinoma: The AJCC/UICC 8th edition updates. Chin Clin Oncol. 2018;7(5):52. DOI: https://doi.org/10.21037/cco.2018.07.03
Chung C, Boterberg T, Lucas J, Panoff J, Valteau-Couanet D, Hero B, et al. Neuroblastoma. Pediatr Blood Cancer. 2021;68(2):e28473. DOI: https://doi.org/10.1002/pbc.28473
Krauel L, Fenollosa F, Riaza L, Pérez M, Tarrado X, Morales A, et al. Use of 3D prototypes for complex surgical oncologic cases. World J Surg. 2016;40(4):1069-75. DOI: https://doi.org/10.1007/s00268-015-3295-y
Vauthey JN, Pawlik TM, Abdalla EK, Arens JF, Nemr RA, Wei SH, et al. Is extended hepatectomy for hepatobiliary malignancy justified? Ann Surg. 2004;239(5):722-32. DOI: https://doi.org/10.1097/01.sla.0000124385.83887.d5
Uchida H, Sakamoto S, Sasaki K, Takeda M, Hirata Y, Fukuda A, et al. Surgical treatment strategy for advanced hepatoblastoma: Resection versus transplantation. Pediatr Blood Cancer. 2018;65(8):e27383. DOI: https://doi.org/10.1002/pbc.27383
Youn JK, Park SJ, Choi YH. Application of 3D printing technology for pre-operative evaluation, education, and informed consent in pediatric retroperitoneal tumors. Sci Rep. 2023;13:1671. DOI: https://doi.org/10.1038/s41598-023-28423-4
Abdalla EK, Barnett CC, Doherty D, Curley SA, Vauthey JN. Hepatic resection for colorectal liver metastasis: Prognostic factors and long-term survival. JAMA Surg. 2002;137(6):675-81.
Bautista Sánchez JA, Acosta-Altamirano G, De Santos González LR, Vázquez González KI, Castro-Fuentes CA. A general view of liver transplantation in Mexico. Rev Gastroenterol Mex. 2024;89(4):449-61. DOI: https://doi.org/10.1016/j.rgmx.2024.04.008
Zhu J, Wang Z, Zhang X, Zhang Y. Impact of 3D printing technology on comprehension of surgical anatomy of retroperitoneal tumor. World J Surg. 2018;42(6):1710-5. DOI: https://doi.org/10.1007/s00268-018-4489-x
Malik HH, Darwood AR, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, et al. Three-dimensional printing in surgery: A review of current surgical applications. J Surg Res. 2015;199(2):512-22. DOI: https://doi.org/10.1016/j.jss.2015.06.051
Kong X, Nie L, Zhang H, Wang Z, Ye Q, Tang L, et al. Do 3D printing models improve anatomical teaching about hepatic segments to medical students? A randomized controlled study. World J Surg. 2016;40(8):1969-76. DOI: https://doi.org/10.1007/s00268-016-3541-y
Narang P, Raju B, Jumah F, Konar SK, Nagaraj A, Gupta G, et al. The evolution of 3D anatomical models: A brief historical overview. World Neurosurg. 2021;155:135-43. DOI: https://doi.org/10.1016/j.wneu.2021.07.133
Spătaru RI, Enculescu A, Popoiu MC. Gruber-Frantz tumor: a very rare pathological condition in children. Rom J Morphol Embryol. 2014;55(4):1497-501.
Antoniou EA, Damaskos C, Garmpis N, Garmpi A, Sakellariou S, Dimitroulis D, et al. Solid pseudopapillary tumor of the pancreas: A single-center experience and review of the literature. In Vivo. 2017;31(4):501-10. DOI: https://doi.org/10.21873/invivo.11089
Jáquez-Quintana JO, Maldonado-Garza HJ, Zubía-Nevárez CI. Gruber-Frantz tumor: a rare pancreatic neoplasm. Rev Esp Enferm Dig. 2022;114(3):172-3. DOI: https://doi.org/10.17235/reed.2021.8345/2021
Stefanova N, Kalinov T, Kolev N. Frantz Tumor: A case report of solid pseudopapillary tumor of pancreas. Cureus. 2023;15(7):e41698. DOI: https://doi.org/10.7759/cureus.41698
Qiu L, Trout AT, Ayyala RS, Szabo S, Nathan JD, Geller JI, et al. Pancreatic masses in children and young adults: Multimodality review with pathologic correlation. Radiographics. 2021;41(6):1766-84. DOI: https://doi.org/10.1148/rg.2021210008
Da M, Qian B, Mo X, Xu C, Wu H, Jiang B, et al. Inflammatory myofibroblastic tumors in children: A clinical retrospective study on 19 cases. Front Pediatr. 2021;9:543078.
Thompson LDR. Inflammatory myofibroblastic tumor. Ear Nose Throat J. 2019;100(5):520S-1S. DOI: https://doi.org/10.1177/0145561319890165
Da M, Qian B, Mo X, Xu C, Wu H, Jiang B, et al. Inflammatory myofibroblastic tumors in children: A clinical retrospective study on 19 cases. Front Pediatr. 2021;9:543078. DOI: https://doi.org/10.3389/fped.2021.543078
Surabhi VR, Chua S, Patel RP, Takahashi N, Lalwani N, Prasad SR. Inflammatory myofibroblastic tumors: current update. Radiol Clin North Am. 2016;54(3):553-63. DOI: https://doi.org/10.1016/j.rcl.2015.12.005
Soyer T, Talim B, Karnak İ, Ekinci S, Andiran F, Çiftçi AÖ, et al. Surgical treatment of childhood inflammatory myofibroblastic tumors. Eur J Pediatr Surg. 2017;27(4):319-23. DOI: https://doi.org/10.1055/s-0036-1593380
Rebhandl W, Felberbauer FX, Puig S, Paya K, Hochschorner S, Barlan M, et al. Solid-pseudopapillary tumor of the pancreas (Frantz tumor) in children: report of four cases and review of the literature. J Surg Oncol. 2001;76(4):289-96. DOI: https://doi.org/10.1002/jso.1048