Exploring Actinomycetes metabolites in cancer therapy
DOI:
https://doi.org/10.18203/2320-6012.ijrms20254003Keywords:
Actinomycetes, Anticancer, DrugsAbstract
Cancer poses a serious threat to human health, with its incidence and mortality rates rapidly increasing worldwide. Current therapies often fall short of clinical needs, particularly due to challenges such as tumor resistance to chemotherapy and severe toxic side effects. Therefore, there is an urgent need to develop highly effective anticancer drugs with low toxicity. Natural products derived from microorganisms serve as a vital source of valuable pharmaceuticals and therapeutic agents. Among them, actinomycetes represent a rich reservoir for the discovery of numerous medicinal natural products and play a crucial role in the development of new microbial drugs. In particular, actinomycetes of the genus Streptomyces have attracted significant global attention due to their ability to produce a wide range of bioactive secondary metabolites. The potential of these Gram-positive bacteria to synthesize diverse compounds with potent biological activities makes them ideal candidates for anticancer drug discovery. This review article focuses on the natural products secreted by actinomycetes, their biological functions and their possible roles in anticancer activity.
Metrics
References
Dilip CV, Mulaje SS, Mohalkar RY. A review on actinomycetes and their biotechnological application. Int J Pharm Sci Res. 2013;4(5):1730.
Elsayed TR, Galil DF, Sedik MZ, Hassan HM, Sadik MW. Antimicrobial and anticancer activities of actinomycetes isolated from Egyptian soils. Int J Curr Microbiol Appl Sci. 2020;9(9):1689–700. DOI: https://doi.org/10.20546/ijcmas.2020.909.209
Lam K. Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol. 2006;9(3):245–51. DOI: https://doi.org/10.1016/j.mib.2006.03.004
Antunes TC, Borba MP, Spadari CC. Screening of actinomycetes with activity against clinical isolates of gram-positive cocci with multiresistant profile. J Adv Sci Res. 2014;5(1):13–7.
Busi S, Pattnaik SS. Current status and applications of actinobacteria in the production of anticancerous compounds. In: Gupta VK, Schmoll M, Maki M, Tuohy MG, Mazutti MA, editors. New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier; 2018: 137–53. DOI: https://doi.org/10.1016/B978-0-444-63994-3.00009-6
Britannica T. Editors of Encyclopaedia. "Streptomyces." Encyclopedia Britannica. 2022.
Lechevalier HA, Lechevalier MP. Biology of actinomycetes. Annu Rev Microbiol. 1967;21(1):71–100. DOI: https://doi.org/10.1146/annurev.mi.21.100167.000443
Zaitlin B, Watson SB. Actinomycetes in relation to taste and odour in drinking water: myths, tenets and truths. Water Res. 2006;40(9):1741–53. DOI: https://doi.org/10.1016/j.watres.2006.02.024
Srinivasan R, Kannappan A, Shi C, Lin X. Marine bacterial secondary metabolites: a treasure house for structurally unique and effective antimicrobial compounds. Mar Drugs. 2021;19(10):530. DOI: https://doi.org/10.3390/md19100530
Kumar R, Biswas K, Soalnki V, Kumar P, Tarafdar A. Actinomycetes: potential bioresource for human welfare: a review. Res J Chem Environ Sci. 2014;2:5–16.
Zhang H, Wang Y, Pfeifer BA. Bacterial hosts for natural product production. Mol Pharm. 2008;5(2):212–25. DOI: https://doi.org/10.1021/mp7001329
Berdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo). 2012;65(8):385–3. DOI: https://doi.org/10.1038/ja.2012.27
Baskaran R, Subramanian T, Zuo W, Qian J, Wu G, Kumar A. Major source of marine actinobacteria and its biomedical application. In: Kalia CV, editor. Microbial Applications. Berlin/Heidelberg: Springer. 2017;2:55–82. DOI: https://doi.org/10.1007/978-3-319-52669-0_3
Singh R, Dubey AK. Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci. 2015;5:106–16. DOI: https://doi.org/10.35652/IGJPS.2015.11
Dudeja SS, Giri R. Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legume and non-legume. Afr J Microbiol Res. 2014;8:1562–72. DOI: https://doi.org/10.5897/AJMR2013.6541
Omura S, Takahashi Y, Iwai Y, Tanaka H. Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot. 1982;35:1013–9. DOI: https://doi.org/10.7164/antibiotics.35.1013
Bull AT, Stach JE, Ward AC, Goodfellow M. Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek. 2005;87(1):65–79.
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel). 2020;13(9):245. DOI: https://doi.org/10.3390/ph13090245
Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017;77(15):1603–10. DOI: https://doi.org/10.1007/s40265-017-0802-5
Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo). 2009;62(1):5–16. DOI: https://doi.org/10.1038/ja.2008.16
Bull AT, Stach JE, Ward AC, Goodfellow M. Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek. 2005;87(1):65–79. DOI: https://doi.org/10.1007/s10482-004-6562-8
Williams PG, Miller ED, Asolkar RN, Jensen PR, Fenical W. Arenicolides A–C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J Org Chem. 2007;72(13):5025–34. DOI: https://doi.org/10.1021/jo061878x
Wu SJ, Fotso S, Li F, Qin S, Laatsch H. Amorphane sesquiterpenes from a marine Streptomyces sp. J Nat Prod. 2007;70(2):304–6. DOI: https://doi.org/10.1021/np050358e
Gupta RS, Murray W, Gupta R. Cross resistance pattern towards anticancer drugs of a human carcinoma multidrug-resistant cell line. Br J Cancer. 1988;58(4):441–7. DOI: https://doi.org/10.1038/bjc.1988.237
Ward SL, Hu Z, Schirmer A, Reid R, Revill WP, Reeves CD, et al. Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the chm polyketide synthase in Streptomyces fradiae. Antimicrob Agents Chemother. 2004;48(12):4703–12. DOI: https://doi.org/10.1128/AAC.48.12.4703-4712.2004
Stritzke K, Schulz D, Laatsch H, Helmke E, Beil W. Novel caprolactones from a marine streptomycete. J Nat Prod. 2004;67(3):395–401. DOI: https://doi.org/10.1021/np030321z
Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H. Chinikomycins A and B: isolation, structure elucidation and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod. 2005;68(3):349–53. DOI: https://doi.org/10.1021/np030518r
Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T. Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties. J Antibiot (Tokyo). 1989;42(10):1556–61. DOI: https://doi.org/10.7164/antibiotics.42.1556
Aftab U, Zechel DL, Sajid I. Antitumor compounds from Streptomyces sp. KML-2, isolated from Khewra salt mines, Pakistan. Biol Res. 2015;48:1–10. DOI: https://doi.org/10.1186/s40659-015-0046-3
Sommer PSM, Almeida RC, Schneider K, Beil W, Süssmuth RD, Fiedler HP. Nataxazole, a new benzoxazole derivative with antitumor activity produced by Streptomyces sp. Tü 6176. J Antibiot (Tokyo). 2008;61(10):683–6. DOI: https://doi.org/10.1038/ja.2008.97
El-Sayed MH. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (Streptomyces mirabilis strain NSQu-25). World Appl Sci J. 2012;20(9):1202–12.
Bauermeister A, Calil FA, Pinto FdCL, Medeiros TCT, Almeida LC, Silva LJ, et al. Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities. Nat Prod Res. 2019;33(12):1713–20. DOI: https://doi.org/10.1080/14786419.2018.1434639
Almeida LC, Bauermeister A, Rezende-Teixeira P, Santos EAD, Moraes LAB, Machado-Neto JA, et al. Pradimicin-IRD exhibits antineoplastic effects by inducing DNA damage in colon cancer cells. Biochem Pharmacol. 2019;168:38–47. DOI: https://doi.org/10.1016/j.bcp.2019.06.016
Lv Q, Fan Y, Tao G, Fu P, Zhai J, Ye B, et al. Sekgranaticin, a SEK34b-granaticin hybrid polyketide from Streptomyces sp. 166. J Org Chem. 2019;84(14):9087–92. DOI: https://doi.org/10.1021/acs.joc.9b01022
Son S, Ko SK, Jang M, Lee JK, Kwon MC, Kang DH, et al. Polyketides and anthranilic acid possessing 6-deoxy-α-L-talopyranose from a Streptomyces species. J Nat Prod. 2017;80(5):1378–86. DOI: https://doi.org/10.1021/acs.jnatprod.6b01059
Lu C, Zhao Y, Jia WQ, Zhang H, Qi H, Xiang WS, et al. A new anthracycline-type metabolite from Streptomyces sp. NEAU-L3. J Antibiot (Tokyo). 2017;70(10):1026–8. DOI: https://doi.org/10.1038/ja.2017.95
Shang NN, Zhang Z, Huang JP, Wang L, Luo J, Yang J, et al. Glycosylated piericidins from an endophytic Streptomyces with cytotoxicity and antimicrobial activity. J Antibiot (Tokyo). 2018;71(7):672–6. DOI: https://doi.org/10.1038/s41429-018-0051-1
Conti R, Chagas FO, Caraballo-Rodriguez AM, Melo WG, do Nascimento AM, Cavalcanti BC, et al. Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides Mart. and the biological potential of their secondary metabolites. Chem Biodivers. 2016;13(6):727–36. DOI: https://doi.org/10.1002/cbdv.201500225
Li W, Yang X, Yang Y, Zhao L, Xu L, Ding Z. A new anthracycline from endophytic Streptomyces sp. YIM66403. J Antibiot (Tokyo). 2015;68(3):216–9. DOI: https://doi.org/10.1038/ja.2014.128
Barreca M, Spanò V, Montalbano A, Cueto M, Díaz Marrero AR, Deniz I, et al. Marine anticancer agents: an overview with a particular focus on their chemical classes. Mar Drugs. 2020;18(12):619. DOI: https://doi.org/10.3390/md18120619
Oba GM, Sahu R, Shah K, Paliwal D, Sah AK, Thakur A. Current Developments in the Pharmacological Activities and Synthesis of Carbazole Derivatives. Mini-Reviews in Medicinal Chemistry. 2025. DOI: https://doi.org/10.2174/0113895575407122250822095143
Robinson SL, Christenson JK, Wackett LP. Biosynthesis and chemical diversity of β-lactone natural products. Nat Prod Rep. 2019;36:458–75. DOI: https://doi.org/10.1039/C8NP00052B
Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006;95(7):829–34. DOI: https://doi.org/10.1038/sj.bjc.6603331
Zheng J. Self-assembly of pH-responsive prodrugs for effective antitumor therapy. Highlights in Science, Engineering and Technology. 2023;36:213–8. DOI: https://doi.org/10.54097/hset.v36i.5673
Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;2(9):575–9. DOI: https://doi.org/10.1016/1074-5521(95)90120-5
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. DOI: https://doi.org/10.1016/j.cell.2009.06.034
Naujokat C, Fuchs D, Opelz G. Salinomycin in cancer: a new mission for an old agent. Mol Med Rep. 2010;3(4):555–9. DOI: https://doi.org/10.3892/mmr_00000296
Huczynski A. Salinomycin: a new cancer drug candidate. Chem Biol Drug Des. 2012;79(2):235–8. DOI: https://doi.org/10.1111/j.1747-0285.2011.01287.x
Zhou S, Wang F, Wong ET, Fonkem E, Hsieh TC, Wu JM, Wu E. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem. 2013;20(33):4095–101. DOI: https://doi.org/10.2174/15672050113109990199
Bethesda MD. PubChem Compound Summary for CID 3961, Losartan: National Center for Biotechnology Information. National Library of Medicine (US). 2004;19.
Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol. 1994;45(4):649–56. DOI: https://doi.org/10.1016/S0026-895X(25)10149-1
Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA and protein synthesis in cell-free systems and intact cells. Cancer Res. 1976;36(8):2891–95.
Formica RN Jr, Lorber KM, Friedman AL, Bia MJ, Lakkis F, Smith JD, et al. The evolving experience using everolimus in clinical transplantation. Transplant Proc. 2004;36(2):495–9. DOI: https://doi.org/10.1016/j.transproceed.2004.01.015
Atkins MB, Yasothan U, Kirkpatrick P. Everolimus. Nat Rev Drug Discov. 2009;8(7):535–6. DOI: https://doi.org/10.1038/nrd2924
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24:40. DOI: https://doi.org/10.1186/s11658-019-0164-y
Chen K, Shi W. Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel. Tumor Biol. 2016;37:10539–44. DOI: https://doi.org/10.1007/s13277-016-4929-x
Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–81. DOI: https://doi.org/10.1091/mbc.e14-04-0916
Yakupoglu YK, Kahan BD. Sirolimus: a current perspective. Exp Clin Transplant. 2003;1(1):8–18.
Sehgal SN. Sirolimus: its discovery, biological properties and mechanism of action. Transplant Proc. 2003;35(3):7–14. DOI: https://doi.org/10.1016/S0041-1345(03)00211-2
Mussin N, Oh SC, Lee KW, Park MY, Seo S, Yi NJ, et al. Sirolimus and metformin synergistically inhibits colon cancer in vitro and in vivo. J Korean Med Sci. 2017;32(9):1385–95. DOI: https://doi.org/10.3346/jkms.2017.32.9.1385