Obesity and the role of artificial intelligence as a prediction tool
DOI:
https://doi.org/10.18203/2320-6012.ijrms20253644Keywords:
Artificial intelligence, Obesity, Risk prediction, Machine learning, Digital health, Personalized medicineAbstract
Obesity is one of the leading public health challenges worldwide, with a growing prevalence and a strong association with chronic noncommunicable diseases. Traditional methods for risk assessment and clinical management have shown limitations in addressing the multifactorial complexity of this condition. In this context, artificial intelligence (AI) emerges as an innovative tool capable of enhancing risk prediction and optimizing treatment strategies. This article reviews current AI approaches applied to obesity, ranging from predictive models based on clinical, genomic, and behavioural data to personalized digital interventions in nutrition, physical activity, and therapeutic adherence. Furthermore, the main advantages, limitations, and ethical challenges of clinical implementation are analyzed. Finally, recommendations are provided to guide the responsible integration of AI into medical practice, aiming to advance toward more predictive, preventive, and personalized medicine in obesity management.
Metrics
References
Du J, Yang S, Zeng Y, Ye C, Chang X, Wu S, et al. Visualization obesity risk prediction system based on machine learning. Sci Rep. 2024;14:22245 DOI: https://doi.org/10.1038/s41598-024-73826-6
Helforoush Z. Prediction and classification of obesity risk based on machine-learning techniques. Front Big Data. 2024;7:1469981 DOI: https://doi.org/10.3389/fdata.2024.1469981
Görmez Y. ML model with explainable AI to categorize obesity levels from behavioral data. BMC Med Inform Decis Mak. 2025;25(1):33.
Liopyris, K.; Gregoriou, S.; Dias, J.; Stratigos, A.J. Artificial Intelligence in Dermatology: Challenges and Perspectives. Dermatol. Ther. 2022;12:2637-51. DOI: https://doi.org/10.1007/s13555-022-00833-8
Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics. 2023;13:2760. DOI: https://doi.org/10.3390/diagnostics13172760
Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep learning interpretation of echocardiograms. NPJ Digit Med. 2020;3:10. DOI: https://doi.org/10.1038/s41746-019-0216-8
Kaur R, Kumar R, Gupta M. Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence. Endocrine. 2022;78:458-69. DOI: https://doi.org/10.1007/s12020-022-03215-4
Shonkoff E, Cara KC, Pei X, Chung M, Kamath S, Panetta K, et al. AI-based digital image dietary assessment methods compared to humans and ground truth: A systematic review. Ann Med. 2023;55:2273497. DOI: https://doi.org/10.1080/07853890.2023.2273497
Ergün U, Aktepe E, Koca YB. Detection of body shape changes in obesity monitoring using image processing techniques. Sci. Rep. 2024;14:24178. DOI: https://doi.org/10.1038/s41598-024-73270-6
Jeong JH, Lee IG, Kim SK, Kam TE, Lee SW, Lee E. DeepHealthNet: Adolescent Obesity Prediction System Based on a Deep Learning Framework. IEEE J. Biomed. Health Inform. 2024;28:2282–93. DOI: https://doi.org/10.1109/JBHI.2024.3356580
Stierman B, Afful J, Carroll MD, Chen TC, Davy O, Fink S, Akinbami LJ. National Health and Nutrition Examination Survey 2017-March 2020 Prepandemic Data Files-Development of Files and Prevalence Estimates for Selected Health Outcomes. Natl Health Stat Rep. 2021;158:1–20.
Robinson TN, Banda JA, Hale L, Lu AS, Fleming-Milici F, Calvert SL, et al. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics. 2017;140 (Suppl. S2):S97–S101. DOI: https://doi.org/10.1542/peds.2016-1758K
Golley RK, Maher C, Matricciani L, Olds TS. Sleep duration or bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. Int J Obes. 2013;37:546–51. DOI: https://doi.org/10.1038/ijo.2012.212
Zarkogianni K, Chatzidaki E, Polychronaki N, Kalafatis E, Nicolaides NC, Voutetakis A, et al. The ENDORSE Feasibility Study: Exploring the Use of M-Health, Artificial Intelligence and Serious Games for the Management of Childhood Obesity. Nutrients. 2023;15:1451. DOI: https://doi.org/10.3390/nu15061451
Schram MT, Sep SJS, van der Kallen CJ, Dagnelie PC, Koster A, Schaper N, et al. The Maastricht Study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiology. 2014;29:439–51. DOI: https://doi.org/10.1007/s10654-014-9889-0
Macartney-Coxson D, Benton MC, Blick R, Stubbs RS, Hagan RD, Langston MA. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin. Epigenetics. 2017;9:48. DOI: https://doi.org/10.1186/s13148-017-0344-4
Guénard FDY, Hould FS, Lebel S, Tchernof A, Marceau P, Vohl MC. Use of Blood as a Surrogate Model for the Assessment of Visceral Adipose Tissue Methylation Profiles Associated with the Metabolic Syndrome in Men J Mol Genet. 2016;10:1–8. DOI: https://doi.org/10.4172/1747-0862.1000198
Jardon KME, Canfora E, Goossens GH, Blaak E. Dietary macronutrients and the gut microbiome: A precision nutrition approach to improve cardiometabolic health. Gut. 2022;71:1214–26. DOI: https://doi.org/10.1136/gutjnl-2020-323715
Sinha R, Kachru D, Ricchetti RR, Singh-Rambiritch S, Muthukumar KM, Singaravel V, et al. Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study. J Med Internet Res. 2021;23:e2540. DOI: https://doi.org/10.2196/25401
Cuevas-Sierra A, Milagro FI, Guruceaga E, Cuervo M, Goni L, García-Granero M, et al. A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population. Clin Nutr. 2022;41:1712-23. DOI: https://doi.org/10.1016/j.clnu.2022.06.008
Jie Z, Yu X, Liu Y, Sun L, Chen P, Ding Q, et al. The Baseline Gut Microbiota Directs Dieting-Induced Weight Loss Trajectories. Gastroenterology. 2021;160:2029–2042.e16. DOI: https://doi.org/10.1053/j.gastro.2021.01.029
Mattioli AV, Pinti M, Farinetti A, Nasi M. Obesity risk during collective quarantine for the COVID-19 epidemic. Obes. Med. 2020;20:100263 DOI: https://doi.org/10.1016/j.obmed.2020.100263
Forman EM, Berry MP, Butryn ML, Hagerman CJ, Huang Z, Juarascio AS, et al. Using artificial intelligence to optimize delivery of weight loss treatment: Protocol for an efficacy and cost-effectiveness trial. Contemp. Clin. Trials. 2022;124:107029. DOI: https://doi.org/10.1016/j.cct.2022.107029
Forman EM, Kerrigan SG, Butryn ML, Juarascio AS, Manasse SM, Ontañón S, et al. Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment for weight loss? J Behav Med. 2019;42:276–90. DOI: https://doi.org/10.1007/s10865-018-9964-1
Compernolle S, Vandelanotte C, Cardon G, De Bourdeaudhuij I, De Cocker K. Effectiveness of a web-based, computertailored, pedometer-based physical activity intervention for adults: A cluster randomized controlled trial. J Med Internet Res. 2015;17:e38. DOI: https://doi.org/10.2196/jmir.3402
Recio-Rodriguez J, Agudo-Conde C, Martin-Cantera C, González-Viejo MN, Fernandez-Alonso MDC, et al. Short-Term Effectiveness of a Mobile Phone App for Increasing Physical Activity and Adherence to the Mediterranean Diet in Primary Care: A Randomized Controlled Trial (EVIDENT II Study). J Med Internet Res. 2016;18:e331. DOI: https://doi.org/10.2196/jmir.6814
Edwards CH, Aas E, Kinge JM. Body mass index and lifetime healthcare utilization. BMC Health Serv Res. 2019;19:696. DOI: https://doi.org/10.1186/s12913-019-4577-0
Khokhar S, Holden J, Toomer C, Del Parigi A. Weight Loss with an AI-Powered Digital Platform for Lifestyle Intervention. Obes Surg. 2024;34:1810–8. DOI: https://doi.org/10.1007/s11695-024-07209-1
Chew HS, Chew NW, Loong SS, Lim SL, Tam WS, W, Chin YH, et al. Effectiveness of an Artificial Intelligence-Assisted App for Improving Eating Behaviors: Mixed Methods Evaluation. J Med Internet Res. 2024;26:e46036. DOI: https://doi.org/10.2196/46036
Azizi H, Mirnajafi-Zadeh J, Rohampour K, Semnanian S. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci. Lett. 2010:482;255-9. DOI: https://doi.org/10.1016/j.neulet.2010.07.050