Microbial photoinactivation by blue light: advances and therapeutic perspectives in infections caused by multidrug-resistant pathogens
DOI:
https://doi.org/10.18203/2320-6012.ijrms20254396Keywords:
Antimicrobial resistance, Blue light, Inactivation, ROS, Phototherapy, PathogensAbstract
Blue light (400–470 nm) is emerging as a promising alternative to address the growing threat of antimicrobial resistance. Microbial inactivation by blue light is based on the production of reactive oxygen species (ROS), which are light-induced and mediated by photosensitizers, resulting in the destruction of microbial cells. The microbicidal efficacy of blue light against diverse pathogens has been demonstrated in in vitro and preclinical studies, achieving reductions in cell viability greater than 3 log10 in multidrug-resistant bacteria. Furthermore, blue light has been reported to be harmless to host cells, which has spurred the development of clinical treatments, as well as protocols for food preservation and environmental disinfection. However, variability in parameters such as wavelength, dose, and endogenous chromophores limits standardization for clinical use. Therefore, future research will need to focus on optimizing its use in clinical practice, considering not only the effect on microorganisms but also on the exposed tissue. This review presents an up-to-date analysis of the mechanisms of action, experimental evidence, and clinical applications of blue light, emphasizing its potential as an alternative or adjunctive therapy in controlling infections caused by multidrug-resistant pathogens.
Metrics
References
Araque M. Resistencia antimicrobiana. De la preocupación a la ocupación. Enfoque “Una Salud”. Boletín de la Academia Nacional de Medicina. 2018;119(10):16-24.
Mohsin S, Amin MN. Superbugs: a constraint to achieving the sustainable development goals. Bull Natl Res Cent. 2023;47:63. DOI: https://doi.org/10.1186/s42269-023-01036-7
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet. 2024;404(10459):1199-226.
World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Available at: https://www.who.int/ publications/i/item/9789240062702. Accessed on 14 October 2025.
Capuozzo M, Zovi A, Langella R, Ottaiano A, Cascella M, Scognamiglio M, et al. Optimizing antibiotic use: Addressing resistance through effective strategies and health policies. Antibiotics. 2024;13:1112. DOI: https://doi.org/10.3390/antibiotics13121112
Haridas D, Atreya CD. The microbicidal potential of visible blue light in clinical medicine and public health. Front Med. 2022;9:905606. DOI: https://doi.org/10.3389/fmed.2022.905606
Gwynne PJ, Gallagher MP. Light as a broad-spectrum antimicrobial. Front Microbiol. 2018;9:119. DOI: https://doi.org/10.3389/fmicb.2018.00119
Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M. Inactivation effect of violet and blue light on ESKAPE pathogens and closely related non-pathogenic bacterial species – a promising tool against antibiotic-sensitive and antibiotic-resistant microorganisms. Front Microbiol. 2021;11:612367. DOI: https://doi.org/10.3389/fmicb.2020.612367
dos Anjos C, Leanse LG, Ribeiro MS, Sellera FP, Dropa M, Arana-Chavez VE, et al. New insights into the bacterial targets of antimicrobial blue light. Microbiol Spectr. 2023;11:e02833-22. DOI: https://doi.org/10.1128/spectrum.02833-22
El Hindawi G, Varela-Rangel YY, Araque M. Photoinactivation of extensively drug-resistant Gram negative bacteria from healthcare-associated infections in Venezuela. Int J Res Med Sci. 2023;11(9):3175-82. DOI: https://doi.org/10.18203/2320-6012.ijrms20232764
Sinclair LG, Dougall LR, Ilieva Z, McKenzie K, Anderson JG, MacGregor SJ, et al. Laboratory evaluation of the broad-spectrum antibacterial efficacy of a low-irradiance visible 405-nm light system for surface-simulated decontamination. Health Technol. 2023;1:15. DOI: https://doi.org/10.1007/s12553-023-00761-3
Amodeo D, Lucarelli V, De Palma I, Puccio A, Nante N, Cevenini G, et al. Efficacy of violet–blue light to inactive microbial growth. Sci Rep. 2022;12:20179. DOI: https://doi.org/10.1038/s41598-022-24563-1
Nakonieczna J, Wozniak A, Pieranski M, Rapacka-Zdonczyk A, Ogonowska P, Grinholc M. Photoinactivation of ESKAPE pathogens: overview of novel therapeutic strategy. Future Med Chem. 2019;11(5):443-61. DOI: https://doi.org/10.4155/fmc-2018-0329
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon. 2022;8:e10282. DOI: https://doi.org/10.1016/j.heliyon.2022.e10282
Enwemeka CS. Antimicrobial blue light: an emerging alternative to antibiotics. Photomed Laser Surg. 2013;31(11):509-11. DOI: https://doi.org/10.1089/pho.2013.9871
Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 2017;32(8):1909-18. DOI: https://doi.org/10.1007/s10103-017-2317-4
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond? Adv Drug Deliv Rev. 2022;180:114057. DOI: https://doi.org/10.1016/j.addr.2021.114057
Wu S, Subharat P, Brightwell G. A New Insight into the bactericidal mechanism of 405 nm blue light-emitting-diode against dairy sourced Cronobacter sakazakii. Foods. 2021;10:9. DOI: https://doi.org/10.3390/foods10091996
Halstead FD, Ahmed Z, Bishop JRB, Oppenheim BA. The potential of visible blue light (405 nm) as a novel decontamination strategy for carbapenemase-producing enterobacteriaceae (CPE). Antimicrob Resist Infect Control. 2019;8:14. DOI: https://doi.org/10.1186/s13756-019-0470-1
Goh MH, Connolly JJ, Chen AF, Rabiner RA, Lozano-Calderon SA. Antimicrobial effect of blue light on antibiotic-sensitive and drug-resistant Escherichia coli: a novel isotropic optical fibre. Access Microbiol. 2025;7(3):000967. DOI: https://doi.org/10.1099/acmi.0.000967.v3
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, et al. Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist Updat. 2017;33-5:1-22. DOI: https://doi.org/10.1016/j.drup.2017.10.002
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev. 2023;52(5):1697-722. DOI: https://doi.org/10.1039/D0CS01051K
Dong P T, Jusuf S, Hui J, Zhan Y, Zhu Y, Liu GY, et al. Photoinactivation of catalase sensitizes a wide range of bacteria to ROS-producing agents and immune cells. JCI Insight. 2022;7(10):e153079. DOI: https://doi.org/10.1172/jci.insight.153079
Jusuf S, Mansour MK. Catalase deactivation increases dermatophyte sensitivity to ROS sources. J Fungi. 2024;10(7):476. DOI: https://doi.org/10.3390/jof10070476
Lena A, Marino M, Manzano M, Comuzzi C, Maifreni M. An overview of the application of blue light-emitting diodes as a non-thermic green technology for microbial inactivation in the food sector. Food Eng Rev. 2024;16:59-84. DOI: https://doi.org/10.1007/s12393-023-09355-1
Woźniak A, Kruszewska B, Pierański MK, Rychłowski M, Grinholc M. Antimicrobial photodynamic inactivation affects the antibiotic susceptibility of Enterococcus spp. clinical isolates in biofilm and planktonic cultures. Biomolecules. 2021;11(5):693. DOI: https://doi.org/10.3390/biom11050693
Cotter EJ, Cotter LM, Riley CN, Dixon J, VanDerwerker N, Ufot AI, et al. Antimicrobial effects of blue light therapy against Cutibacterium acnes: optimal dosing and impact of serial treatments. JSES Int. 2023;8(2):328-34. DOI: https://doi.org/10.1016/j.jseint.2023.11.020
Rhodes NL, de la Presa M, Barneck MD, Poursaid A, Firpo MA, Langell JT. Violet 405 nm light: A novel therapeutic agent against β-lactam-resistant Escherichia coli. Lasers Surg Med. 2016;48(3):311-7. DOI: https://doi.org/10.1002/lsm.22457
Fontana CR, Song X, Polymeri A, Goodson JM, Wang X, Soukos NS. The effect of blue light on periodontal biofilm growth in vitro. Lasers Med Sci. 2015;30(8):2077-86. DOI: https://doi.org/10.1007/s10103-015-1724-7
Olszewska M, Dev Kumar G, Hur M, Diez-Gonzalez F. Inactivation of dried cells and biofilms of Listeria monocytogenes by exposure to blue light at different wavelengths and the influence of surface materials. Appl Environ Microbiol. 2023;89:10. DOI: https://doi.org/10.1128/aem.01147-23
Guffey JS, Payne WC, Martin KA, James LN, Qian Z. Inhibition of Mycobacterium smegmatis using near-IR and blue light. Int J Res Med Sci. 2017;2(1):42-6. DOI: https://doi.org/10.5455/2320-6012.ijrms20140209
Schmid J, Hoenes K, Vatter P, Hessling M. Antimicrobial Effect of Visible Light-Photoinactivation of Legionella rubrilucens by Irradiation at 450, 470, and 620 nm. Antibiotics. 2019;8(4):187. DOI: https://doi.org/10.3390/antibiotics8040187
Galo IDC, Prado RP, Santos WGD. Blue and red light photoemitters as approach to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth. Braz J Biol. 2021;29(82):e231742. DOI: https://doi.org/10.1590/1519-6984.231742
Barneck MD, Rhodes NLR, de la Presa M, Allen JP, Poursaid AE, Nourian MM, et al. Violet 405-nm light: a novel therapeutic agent against common pathogenic bacteria. J Surg Res. 2016;206(2):316-24. DOI: https://doi.org/10.1016/j.jss.2016.08.006
Luo S, Yang XI, Wu S, Liu M, Zhang X, Sun X, et al. Blue Light for Inactivation of Meatborne Pathogens and Maintaining the Freshness of Beef. J Food Prot. 2022;85(4):553-62. DOI: https://doi.org/10.4315/JFP-21-234
Halstead FD, Thwaite JE, Burt R, Laws TR, Raguse M, Moeller R, et al. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms. Appl Environ Microbiol. 2016;82:4006-16. DOI: https://doi.org/10.1128/AEM.00756-16
Chen H, Cheng Y, Moraru CI. Blue 405 nm LED light effectively inactivates bacterial pathogens on substrates and packaging materials used in food processing. Sci Rep. 2023;13:15472. DOI: https://doi.org/10.1038/s41598-023-42347-z
Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, et al. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: in vitro and in vivo studies. J Infect Dis. 2016;213(9):1380-7. DOI: https://doi.org/10.1093/infdis/jiw070
Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012;10(3):120. DOI: https://doi.org/10.3389/fmicb.2012.00120
Luo Q, Liu Ch, Zhang A, Zhang D. Research progress in photodynamic therapy for Helicobacter pylori infection. Helicobacter. 2024;29(4):e13068. DOI: https://doi.org/10.1111/hel.13068
Morici P, Battisti A, Tortora G, Menciassi A, Checcucci G, Ghetti F, et al. The in vitro photoinactivation of Helicobacter pylori by a novel LED-based device. Front Microbiol. 2020;11:283. DOI: https://doi.org/10.3389/fmicb.2020.00283
Ying J, Shinn-Jyh D, Chun-Cheng C. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J Dent Sci. 2023;18(4):1453-66. DOI: https://doi.org/10.1016/j.jds.2023.07.002
Wang L, Chen Q, Liu D. Development of photodynamic therapy in treating oral diseases. Front Oral Health. 2025;5:1506407. DOI: https://doi.org/10.3389/froh.2024.1506407
Gonçalves MLL, Sobral APT, Gallo J, Gimenez T, Ferri EP, Ianello S, et al. Antimicrobial photodynamic therapy with erythrosine and blue light on dental biofilm bacteria: study protocol for randomised clinical trial. BMJ Open. 2023;13(9):e075084. DOI: https://doi.org/10.1136/bmjopen-2023-075084
Hadi J, Wu S, Brightwell G. Antimicrobial blue light versus pathogenic bacteria: mechanism, application in the food industry, hurdle technologies and potential resistance. Foods. 2020;9:1895. DOI: https://doi.org/10.3390/foods9121895