Mitochondrial dysfunction in refractory angina: therapeutic rationale for cardiolipin stabilization with elamipretide
DOI:
https://doi.org/10.18203/2320-6012.ijrms20260277Keywords:
Refractory angina, Mitochondrial dysfunction, Cardiolipin, Elamipretide, Myocardial energetics, Coronary microvascular dysfunctionAbstract
Refractory angina remains a significant clinical challenge despite advances in pharmacological therapy and coronary revascularization. Conventional anti-anginal agents primarily target myocardial oxygen demand or coronary blood flow; however, a substantial proportion of patients continue to experience persistent symptoms, particularly those with coronary microvascular dysfunction or ischemia in the absence of obstructive coronary artery disease. Increasing evidence suggests that impaired myocardial energetics and mitochondrial dysfunction play a central role in ischemic symptom generation. Cardiolipin, a key phospholipid of the inner mitochondrial membrane, is essential for maintaining electron transport chain integrity and efficient oxidative phosphorylation. Disruption of cardiolipin structure during ischemia contributes to mitochondrial dysfunction, reduced adenosine triphosphate (ATP) production, and increased susceptibility to ischemia. Elamipretide is a novel mitochondria-targeted peptide designed to stabilize cardiolipin and improve mitochondrial function under ischemic conditions without significant hemodynamic effects. This review examines the pathophysiological basis of refractory angina with a focus on mitochondrial dysfunction, outlines the pharmacological rationale for targeting cardiolipin, and critically appraises the preclinical and emerging clinical evidence supporting elamipretide as a potential therapeutic strategy. Targeting myocardial bioenergetics represents a mechanistically distinct and promising approach for selected patients with refractory angina.
Metrics
References
Mannheimer C, Camici P, Chester MR, Collins A, DeJongste M, Eliasson T, et al. The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J. 2002;23(5):355-70. DOI: https://doi.org/10.1053/euhj.2001.2706
Taqueti VR, Di Carli MF. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(21):2625-41. DOI: https://doi.org/10.1016/j.jacc.2018.09.042
Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation. 2017;135(11):1075-92. DOI: https://doi.org/10.1161/CIRCULATIONAHA.116.024534
Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356(11):1140-51. DOI: https://doi.org/10.1056/NEJMra063052
Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065-89. DOI: https://doi.org/10.1006/jmcc.2001.1378
Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res. 2010;88(1):40-50. DOI: https://doi.org/10.1093/cvr/cvq240
Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460-73 DOI: https://doi.org/10.1161/01.RES.0000258450.44413.96
Schlame M, Greenberg ML. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):3-7. DOI: https://doi.org/10.1016/j.bbalip.2016.08.010
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol. 2017;5:90. DOI: https://doi.org/10.3389/fcell.2017.00090
Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003;17(6):714-6. DOI: https://doi.org/10.1096/fj.02-0729fje
Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol. 2005;1(4):223-32. DOI: https://doi.org/10.1038/nchembio727
Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286(1):135-41. DOI: https://doi.org/10.1016/S0378-1119(01)00814-9
Sparagna GC, Chicco AJ, Murphy RC, Bristow MR, Johnson CA, Rees ML, et al. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res. 2007;48(7):1559-70. DOI: https://doi.org/10.1194/jlr.M600551-JLR200
Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191-8. DOI: https://doi.org/10.1111/j.1749-6632.2009.05100.x
Szeto HH, Liu S, Soong Y, Seshan SV, Cohen-Gould L, Manichev V, et al. Mitochondria Protection after Acute Ischemia Prevents Prolonged Upregulation of IL-1β and IL-18 and Arrests CKD. J Am Soc Nephrol. 2017;28(5):1437-1449. DOI: https://doi.org/10.1681/ASN.2016070761
Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta. 2008;1777(7-8):1028-31. DOI: https://doi.org/10.1016/j.bbabio.2008.03.029
Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24(8):1250-61. DOI: https://doi.org/10.1681/ASN.2012121216
Brown DA, Hale SL, Baines CP, del Rio CL, Hamlin RL, Yuyeama Y, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide Bendavia. J Cardiovasc Pharmacol Ther. 2014;19(1):121-32. DOI: https://doi.org/10.1177/1074248413508003
Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9(2):e002206. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.115.002206