Molecular and hormonal regulation of angiogenesis in proliferative endometrium

Yousef Rezaei Chianeh, Pragna Rao


Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro and anti-angiogenic molecules have already been identified. Vascular endothelial growth factor (VEGF) is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration, and new vessel formation. In this article, the role of VEGF and other growth factors in the pathology of dysfunctional uterine bleeding is reviewed. We also discuss the role of VEGF expression and interaction with extracellular matrix that lead to possible inhibition or stimulation of Angiogenic factor on endometrium of dysfunctional uterine bleeding patients.


Angiogenesis, Dysfunctional uterine bleeding, VEGF, HIF-1, Copper

Full Text:



Jane E. Girling & Peter A.W. Rogers: Recent advances in endometrial angiogenesis research. Angiogenesis. 2005;8:89–99.

ACOG Practice Bulletin. Management of anovulatory bleeding. Int J Gynaecol Obstet. 2001;72:263-277.

Kenneth M. Feeley, Michael Wells. Recent Advances in Histopathology. Advances in Endometrial Pathology. 2001;19:17-35.

Hickey M, Pillai G, Higham JM, Sullivan M, Horncastle D, Doherty D Stamp G . Changes in endometrial blood vessels in the endometrium of women with hormone replacement therapy-related irregular bleeding. Hum Reprod. 2003;18:1100–1106.

Hiroko Kodama and Chie Fujisawa. Copper metabolism and inherited copper transport disorders: molecular mechanisms, screening, and treatment. Metallomics, 2009;1:42-52.

Brem S, Wotoczek-Obadia MC. Regulation of angiogenesis by copper reduction and penicillamine: antagonism of cytokine and growth factor activity. AACR Special Conference: Angiogenesis and Cancer Research. Orlando, Fla; January 1998:24-28.

Wren BG. Dysfunctional uterine bleeding. Aust Fam Physician 1998;27:371-377.

Bayer SR, DeCherney AH. Clinical manifestations and treatment of dysfunctional uterine bleeding. JAMA 1993; 269:1823-8.

Johnson CA. Making sense of dysfunctional uterine bleeding. Am Fam Physician 1991; 44:149-57.

Fayez JA. Dysfunctional uterine bleeding. Am Fam Physician 1982; 25:109-15.

Bullen BA, Skriner GS, Beitins IZ, Von Mering G, Turnbull BA, McAuthur JW. Induction of menstrual disorders by strenous exercise in untrained women. N Engl J Med 1985; 312:1349-53.

Erdem O, Erdem M, Erdem A, Memis L, Akyol G. Expression of vascular endothelial growth factor and assessment of microvascular density with CD 34 and endoglin in proliferative endometrium, endometrial hyperplasia and endometrial carcinoma. International Journal of Gynecology Cancer. 2007;17:1327-1332.

Smith SK. Regulation of angiogenesis in the endometrium. Trends in Endocrinology and metabolism.2001; 12: 147-51.

G. guşet, simona costi, elena lazăr, alis dema, mărioara cornianu, corina vernic,. Păiuşan. Expressin of vascular endothelial growth factor (vegf) and assessment of microvascular density with cd34 as prognostic markers for endometrial carcinoma. Romanian Journal of Morphology and Embryology 2010;51(4):677–682.

Minjarez DA, Bradshaw KD. Abnormal uterine bleeding in adolescents. Obstet Gynecol Clin North Am 2002;27(1):63–78.

Sanfilippo JS, Yussman MA. Gynecologic problems of adolescence. In: Lavery J, Sanfilippo JS, editors. Pediatric and adolescent gynecology. New York: Springer-Verlag; 1985. p. 61–83.

Fraser IS, Hickey M, Song JY. A comparison of mechanisms underlying disturbances of bleeding caused by spontaneous dysfunctional uterine bleeding or hormonal contraception. Hum Reprod 1996;11(2):165–78.

Akerlund M, Bengtsson LP, Carter AM. A technique for monitoring endometrial or decidual blood flow with an intrauterine thermisor probe. Acta Obstet Gynecol Scand 1976;54: 469–77.

Smith SK. Angiogenesis, vascular endothelial growth factor and the endometrium. Hum Reprod Update 1998;4:509–19.

Zhang L, Rees MC, Bicknell R. The isolation and long-term culture of normal human endometrial epithelium and stroma. Expression of mRNAs for angiogenic polypeptide basally and on oestrogen and progesterone challenges. J Cell Sci 1995;108:323–31.

Smith SK, Abel MH, Kelly RW, et al. The synthesis of prostaglandins from persistent proliferative endometrium. J Clin Endocrinol Metab 1982;55:284–9.

Brown JB, Kellar RJ, Matthew GD. Urinary oestrogen excretion in certain gynaecological disorders. J Obstet Gynaecol Br Emp 1959;66:177–211.

Schroder R. Endometrial hyperplasia in relation to genital function. Am J Obstet Gynecol 1954;68:294–309.

Chwalisz K, Garfield RE. Role of nitric oxide in implantation and menstruation. Hum Reprod 2000;15(3):96–111.

Agrez M, et al. J Cell Biol, 1994;127(2):547-56.

Lee, S., et al. Antipermeability and antiproliferative effects of standard and frozen bevacizumab on choroidal endothelial cells. J Cell Biol, 2005. 169(4):681-91.

Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N.Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem, 1992;267(36):26031-7.

Park, J.E., G.A. Keller, and N. Ferrara, The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell, 1993;4(12):1317-26.

Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002;295(5564):2387-92.

O'Reilly MS, et al. Endostatin: an endogenous inhibitor angiogenesis and tumor growth Cell, 1997. 88(2):277-85.

Ferreras M, et al. Generation and degradation of human endostatin protein by various proteinases FEBS Lett 2000;486(3):247-51.

Dong Z, et al. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma Cell 1997;88(6):801-10.

Cornelius LA, et al. Matrix metalloproteinases generate angiostatin: effect on neovascularization. J Immunol, 1998;161(12):6845-52.

Hamano Y, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alpha V beta3 integrin. Cancer Cell, 2003;3(6):589-601.

Pepper, MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis Arterioscler Thromb Vasc Biol, 2001. 21(7):1104-17.

Sottile J. Regulation of angiogenesis by extracellular matrix Biochim Biophys Acta, 2004;1654(1):13-22.

Kokorine I, Marbaix E, Henriet P, Okada Y, Donnez J, Eeckhout Y, Courtoy PJ. Focal cellular origin and regulation of interstitial collagenase (matrix metalloproteinase-1) are related to menstrual breakdown in the human endometrium. J Cell Sci 1996;109:2151-2160.

Marbaix E, Kokorine I, Moulin P, Donnez J, Eeckhout Y, Courtoy PJ. Menstrual breakdown of human endometrium can be mimicked in vitro and is selectively and reversibly blocked by inhibitors of matrix metalloproteinases. Proc Natl Acad Sci USA 1996;93:9120–9125.

McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000;6:149-156.

Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001;11:37-43.

Fre´de´ric Goffin, et al. Expression Pattern of Metalloproteinases and Tissue Inhibitors of Matrix-Metalloproteinases in Cycling Human Endometrium. Biology of Reproduction 2003;69:976–984.

Cross MJ, et al. Vitamin E Analogues Inhibit Angiogenesis by Selective Induction of Apoptosis in Proliferating Endothelial Cells: The Role of Oxidative Stress Trends Pharmacol Sci, 2001;22(4):201-7.

Good DJ, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A, 1990;87(17):6624-8.

Afshan Rafi, D. Ramkrishna, K. Sabitha, S. Mohaty and Pragna Rao. Serum copper and vascular endothelial growth factor (VEGF) in dysfunctional uterine bleeding: American Journal of Biochemistry and Molecular Biology 2011;1(3):284-290.

Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol. 2002;282(5):H1821–7.

Harris ED. A requirement for copper in angiogenesis. Nutr Rev. 2004;62(2):60-4.

Girling JE, Rogers PA. Recent advances in endometrial angiogenesis research. Angiogenesis. 2005;8(2):89–99.

R. Duchette, S. Gallant and C. Wolf. Tetrathiomolybdate Copper Reduction Therapy as an Antiangiogenic Treatment for Lymphoma and Other Cancers. 2004.

Tan J, Wang B, Zhu L. DNA binding and oxidative DNA damage induced by a quercetin copper(II) complex: potential mechanism of its antitumor properties. J Biol Inorg Chem. 2009;14(5):727–39.

Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 2002;62(17):4854–9.

Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Yanase K, et al. The copper-chelating agent, trientine, attenuates liver enzyme-altered preneoplastic lesions in rats by angiogenesis suppression. Oncol Rep. 2003;10(5):1369–73.

Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, et al. X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci USA. 2007;104(7):2247–52.

Kulier R, O’Brien PA, Helmerhorst FM, Usher-Patel M, d’Arcangues C. Copper containing, framed intra-uterine devices for contraception. Cochrane Database Syst Rev. 2007;(4):CD005347.

Burbos N, Musonda P, Giarenis I, Shiner AM, Giamougiannis P, Morris EP, et al. Predicting the risk of endometrial cancer in postmenopausal women presenting with vaginal bleeding: the Norwich DEFAB risk assessment tool. Br J Cancer. 2010;102(8):1201–6.

Houck, K. A., Ferrara, N., Winer, J., Cachianes, G., Li, B. and Leung, D.W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 1991;5:1806–1814.

Afshan Rafi, Ramakrishna Devaki, K. Sabitha, Shruti Mohanty, Pragna Rao. Importance of Serum Copper and Vascular Endothelial Growth Factor (VEGF-A) Levels in Postmenopausal Bleeding. Ind J Clin Biochem 2012 July:1-5.

Vincenti, V., Cassano, C., Rocchi, M. and Persico, G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation 1996;93:1493–1495.

Lange, T., Guttmann-Raviv, N., Baruch, L., Machluf, M. and Neufeld, G. VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells. J. Biol. Chem. 2003;278:17164-9.

Leung, D.W., Cachianes, G., Kuang,W. J., Goeddel, D. V. and Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

Keck, P. J., Hauser, S. D., Krivi, G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989;246:1309–1312.

Ferrara, N. and Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989;161:851–858.

Ivan, M., Kondo, K., Yang, H. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464–468.

Jaakkola, P., Mole, D. R., Tian, Y. M, et al. (2001) Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468–472.

Gerald D, Berra, E, Frapart YM, et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004;118:781–794.

Semenza, G.L. & Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992;12:5447–5454.

Wang, G.L., Jiang, B.-H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995;92:5510–5514.

Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. Inducible operation of the erythropoietin 3′enhancer in multiple cell lines: evidence for a widespread oxygen sensing mechanism. Proc. Natl. Acad. Sci. USA 1993;90:2423–2427.

Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 200;14:1983–1991.

Wenger, R.H. Cellular adaptation to hypoxia: O2 sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2 regulated gene expression. FASEB J. 2002;16:1151–1162.

Tian, H., McKnight, S.L. & Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82.

Wiesener MS, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 1998;92:2260–2268.

Makino Y, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia- inducible gene expression. Nature 2001;414:550–554.

Ivan M, et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464–468.

Lando D, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–1471.

Yu, F., White, S.B., Zhao, Q. & Lee, F.S. HIF-1αbinding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA 2001;98:9630–9635.

Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. & Ratcliffe, PJ. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J. 2001;20:5197–5206.

Epstein ACR, et al. EGL-9 and mammalian homologues define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43–54.

Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294:1337–1340.