In vitro assessment of Ag and TiO2 nanoparticles cytotoxicity

Apoorva Priyanka Ganapathi, Ramakrishna Devaki, Naveen Reddy Thuniki, Joydeb Manna, Bhaskar Tirumuru, Chinnapu Reddy Gopu, Sadanala Bhavya Deepthi, Rajiv Trivedi, Rohit Kumar Rana, Annie Hasan


Background:Silver (Ag) and titanium dioxide (TiO2) nanoparticles are the most eminent nanoproducts. Due to their antimicrobial and antifungal activity, they have been the well commercialized nanosubstances. The hazards associated with human exposure to Ag and TiO2 nanoparticles should be investigated, and hence both the nanoparticles were synthesized to facilitate the risk assessment process.  

Methods:Prior to the cytotoxic studies, Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) were carried out to ensure the particle size. Glutathione (GSH), Nitric Oxide (NO) and superoxide dismutase (SOD) estimated by ELISA method.

Results:In the present study, the cytotoxicity of Ag and TiO2 were investigated by using the glutathione (GSH), Nitric Oxide (NO) and superoxide dismutase (SOD) by incubating various concentration of silver (0.25 to 76 mg/mL) and titanium dioxide (0.25 to 2 mg/mL) nanoparticles in different incubation periods (24, 48 and 74 hours at 37°C) in plasma.  Results observed that significant decrease (P <0.0001) in the concentration of GSH associated with increased concentration of NO (P <0.0001) and SOD (P <0.0001) after incubation with silver and titanium dioxide nanoparticles at 24hrs at 37°C, however at 48 hours and 74 hours there is not much change.  

Conclusion:The results indicate that silver and titanium dioxide nanoparticles exhibits, nanoparticles mediated cytotoxicity by induction of Reactive Oxygen Species (ROS).



Nanoparticles, ROS, Cytotoxicity, GSH, NO, SOD, Silver, Titanium dioxide

Full Text:



Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39.

Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol. 2008;21(9):1871-7.

Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1-7.

Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res. 2009;43(7):1879-86.

Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891-959.

Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, et al. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect (Larchmt). 2007;8(3):397-403.

Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17-34.

Muangman P, Chuntrasakul C, Silthram S, Suvanchote S, Benjathanung R, Kittidacha S, et al. Comparison of efficacy of 1% silver sulfadiazine and Acticoat for treatment of partial-thickness burn wounds. J Med Assoc Thai 2006;89(7):953-8.

Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1-2):66-73.

Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004;61(9):727-8.

Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004;52:794-804.

Kang KJ. Mechanism of hepatic ischemia/reperfusion injury and protection against reperfusion injury. Transplant Proc. 2002;34(7):2659-61.

Gladwin MT, Crawford JH, Patel RP. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic Biol Med. 2004;36(6):707-17.

Diesen DL, Kuo PC. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis. J Surg Res. 2010;162(1):95-109.

Chen X, Mao SS. Synthesis of titanium dioxide (TiO2) nanomaterials. J Nanosci Nanotechnol. 2006;6(4):906-25.

Ghosh M, Chakraborty A, Mukherjee A. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol. 2013;33(10):1097-110.

Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro. 2012;26(2):351-61.

Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun. 2010 May;396(2):578-83.

Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004;61(9):727-8.

Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochimica et Biophysica Sinica. 2008;40(9):777-82.

Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1-2):66-73.

Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005;2:10.

Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113(11):1555-60.

Foucaud L, Goulaouic S, Bennasroune A Laval-Gilly P, Brown D, Stone V, et al. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule? Toxicol In Vitro. 2010;24(6):1512-20.

Countryman PI, Heddle JA. The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res. 1976;41(2-3):321-32.

Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, et al. Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol. 2008;46(12):3626-31.

Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, et al. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol. 2009;6:23.

Yang SC, Paik SY, Ryu J, Choi KO, Kang TS, Lee JK, et al. Dynamic light scattering-based method to determine primary particle size of iron oxide nanoparticles in simulated gastrointestinal fluid. Food Chem. 2014;161:185-91.

Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005;39(23):9370-6.

Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Höhr D, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol. 2007;222(2):141-51.

Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6(8):1794-807.

Nemmar A, Melghit K, Al-Salam S, Zia S, Dhanasekaran S, Attoub S, et al. Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO2 nanorods. Toxicology. 2011;279(1-3):167-75.

Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115(11):1631-7.

Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25(1):231-41.

Stone V, Shaw J, Brown DM, Macnee W, Faux SP, Donaldson K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro. 1998;12(6):649-59.

Apoorva, G. Genotoxic effects of silver and titanium dioxide nanoparticles. In: Lavanya K, Vidisha, Pavani, Kumar RR, Hasan Q, Ramakrishna D, eds. Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on. Chennai, India: IEEE; 2013: 133-136.