DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20181743

Peripheral stent technology and current status for endovascular treatment of femoropopliteal artery disease: a clinical review

Bhargav Dave, Rikin Shah

Abstract


Over the past decade, the treatment of peripheral artery disease poses a number of technical challenges for the physician. The primary rationale of this article is to review the available literature on the current practices involved in the treatment of peripheral artery disease (PAD), particularly the femoropopliteal lesions. It is evident from the landmark clinical trials that the use of self-expanding drug-eluting stents (DES) has become the most favored clinical strategy for treating peripheral lesions above the knee. It is chiefly due to higher patency rates, and minimal in-stent restenosis and stent fracture rates associated with the use of DES. The technical evolution in the endovascular approach from the use of bare nitinol stents to DES for treating PAD and the factors responsible for this transformation have also been reviewed with their respective justification. Presently there is a need of DES technology for the treatment of femoropopliteal lesions, which can reduce the risk of stent fracture and in-stent restenosis for longer lesions while maintaining patency during long-term follow-up. To conclude, this review establishes that self-expanding DES and drug coated balloons using anti-proliferative drugs like sirolimus and paclitaxel are currently the most effective method of treating the femoropopliteal lesions in PAD.


Keywords


Ankle brachial index, Drug-eluting stents, Endovascular, Femoropopliteal, Nitinol, Peripheral artery disease, Self-expanding, Sirolimus

Full Text:

PDF

References


Müller-Hülsbeck S. EluviaTM peripheral stent system for the treatment of peripheral lesions above the knee. Expert Opin Drug Deliv. 2016;13(11):1639-44.

Aboyans V, Ricco JB, Bartelink ML, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS) Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular. Euro Heart J. 2017;39(9):763-816.

Hertzer NR. The natural history of peripheral vascular disease. Implications for its management. Circulation. 1991;83(2 Suppl):I12-9.

Smith GD, Shipley MJ, Rose G. Intermittent claudication, heart disease risk factors, and mortality. The Whitehall study. Circulation. 1990;82(6):1925-31.

Newman A, Tyrrell K, Vogt M, Kuller L. Morbidity and mortality in hypertensive adults with a low ankle arm blood pressure index. JAMA. 1993;270(4):487-9.

Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality over a Period of 10 Years in Patients with Peripheral Arterial Disease. N Engl J Med. 1992;326(6):381-6.

Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, et al. The New England Journal of Medicine Downloaded from nejm.org at university of Sheffield on September 8, 2013. For personal use only. No other uses without permission. N Engl J Med. 1992;327(2):70-5.

Valentine RJ, Guerra R, Stephan P, Scoggins E, Clagett GP, Cohen J, et al. Family history is a major determinant of subclinical peripheral arterial disease in young adults. J Vasc Surg. 2004;39(2):351-6.

Khaleghi M, Isseh IN, Bailey KR, Kullo IJ. Family History as a Risk Factor for Peripheral Arterial Disease. Am J Cardiol. 2014;114(6):928-32.

Corr U, Carré F, Heuschmann P, Hoffmann U, Verschuren M, Halcox J, et al. Secondary prevention through cardiac rehabilitation: Physical activity counselling and exercise training. Eur Heart J. 2010;31(16):1967-76.

Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381-95.

Pickett CA, Jackson JL, Hemann BA, Atwood JE. Carotid bruits as a prognostic indicator of cardiovascular death and myocardial infarction: a meta-analysis. Lancet. 2008;371(9624):1587-94.

Clark CE, Taylor RS, Shore AC, Ukoumunne OC, Campbell JL. Association of a difference in systolic blood pressure between arms with vascular disease and mortality: A systematic review and meta-analysis. Lancet. 2012;379(9819):905-14.

Cournot M, Taraszkiewicz D, Cambou JP, Galinier M, Boccalon H, Hanaire-Broutin H, et al. Additional prognostic value of physical examination, exercise testing, and arterial ultrasonography for coronary risk assessment in primary prevention. Am Heart J. 2009;158(5):845-51.

Ankle Brachial Index: Quick Reference Guide for Clinicians. J Wound Ostomy Continence Nursing. 2012;39(2S):S21-S29.

Hardman R, Jazaeri O, Yi J, Smith M, Gupta R. Overview of classification systems in peripheral artery disease. Semin Intervent Radiol. 2014;31(4):378-88.

Robertson L, Ki P, Stewart M, Robertson L, Ki P, Stewart M. Angioplasty and stenting for peripheral arterial disease of the lower limbs: an overview of Cochrane Reviews. 2017;(2).

Hennion D, Siano K. Diagnosis and treatment of peripheral arterial disease. Am Fam Physician. 2013;88(1):306-10.

Diehm N, Pattynama PM, Jaff MR, Cremonesi A, Becker GJ, Hopkins LN, et al. Clinical Endpoints in Peripheral Endovascular Revascularization Trials: a Case for Standardized Definitions. Eur J Vasc Endovasc Surg. 2008;36(4):409-19.

Technologies N, Peripheral T, Disease A, Feature D, Disease PA, Fornell D, et al. New Technologies to Treat Peripheral Artery Disease (PAD). 2018;1-7.

Thukkani AK, Kinlay S. Endovascular Intervention for Peripheral Artery Disease. Circ Res. 2015;116(9):1599-613.

Kobayashi T, Parikh SA, Giri J. Intermittent claudication due to peripheral artery disease: best modern medical and endovascular therapeutic approaches. Curr Cardiol Rep. 2015;17(10).

Yiu W, Conte MS. Primary Stenting in Femoropopliteal Occlusive Disease-What Is the Appropriate Role?. Circ J. 2015;79(4):704-11.

Bishu K, Armstrong J. Vascular health and risk management dovepress supera self-expanding stents for endovascular treatment of femoropopliteal disease: a review of the clinical evidence. Vasc Health Risk Manag. 2015;11:387-95.

Laird JR, Katzen BT, Scheinert D, Lammer J, Carpenter J, Buchbinder M, et al. Nitinol Stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the resilient randomized trial. J Endovasc Ther. 2012;19(1):1-9.

Schlager O, Dick P, Sabeti S, Amighi J, Mlekusch W, Minar E, et al. Long-Segment SFA Stenting-The Dark Sides: In-Stent Restenosis, Clinical Deterioration, and Stent Fractures. J Endovasc Ther. 2005;12(6):676-84.

Scheinert D, Scheinert S, Sax J, Piorkowski C, Bräunlich S, Ulrich M, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005;45(2):312-5.

Olin JW, White CJ, Armstrong EJ, Kadian-Dodov D, Hiatt WR. Peripheral artery disease: Evolving role of exercise, medical therapy, and endovascular options. J Am Coll Cardiol. 2016;67(11):1338-57.

Duda SH, Pusich B, Richter G, Landwehr P, Oliva VL, Tielbeek A, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: Six-month results. Circulation. 2002;106(12):1505-9.

Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T, Tielbeek A, et al. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: The SIROCCO II trial. J Vasc Interv Radiol. 2005;16(3):331-8.

Lammer J, Bosiers M, Zeller T, Schillinger M, Boone E, Zaugg MJ, et al. First clinical trial of nitinol self-expanding everolimus-eluting stent implantation for peripheral arterial occlusive disease. J Vasc Surg. 2011;54(2):394-401.

Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, et al. Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the zilver PTX randomized and single-arm clinical studies. J Am Coll Cardiol. 2013;61(24):2417-27.

Müller-Hülsbeck S, Keirse K, Zeller T, Schroë H, Diaz-Cartelle J. Twelve-month results from the majestic trial of the eluvia paclitaxel-eluting stent for treatment of obstructive femoropopliteal disease. J Endovasc Ther. 2016;23(5):701-7.

Zeller T, Rastan A, Macharzina R, Beschorner U, Noory E. Novel approaches to the management of advanced peripheral artery disease: perspectives on drug-coated balloons, drug-eluting stents, and bioresorbable scaffolds. Curr Cardiol Rep. 2015;17(9).

Ho KJ, Owens CD. Diagnosis, classification, and treatment of femoropopliteal artery in-stent restenosis. J Vasc Surg. 2017;65(2):545-57.

Pastromas G, Katsanos K, Krokidis M, Karnabatidis D, Spiliopoulos S. Emerging Stent and balloon technologies in the femoropopliteal arteries. Sci World J. 2014;2014.

Aboyans V, Ricco J-B, Bartelink M-LEL, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017;1-22.

Aghel A, Armstrong EJ. Recent advances in self-expanding stents for use in the superficial femoral and popliteal arteries. Expert Rev Cardiovasc Ther. 2014;12(7):833-42.

Katsanos K, Kitrou P, Spiliopoulos S, Diamantopoulos A, Karnabatidis D. Comparative effectiveness of plain balloon angioplasty, bare metal stents, drug-coated balloons, and drug-eluting stents for the treatment of infrapopliteal artery disease: systematic review and Bayesian network meta-analysis of randomized controlled trials. J Endovascular Therapy. 2016;23(6):851-63.

Rand T, Basile A, Cejna M, Fleischmann D, Funovics M, Gschwendtner M, et al. PTA versus carbofilm-coated stents in infrapopliteal arteries: Pilot study. Cardiovasc Intervent Radiol. 2006;29(1):29-38.

Bosiers M. AMS INSIGHTand#x2014; absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. J Vasc Surg. 2017;50(5):1241.

Randon C, Jacobs B, De Ryck F, Vermassen F. Angioplasty or primary stenting for infrapopliteal lesions: results of a prospective randomized trial. Cardiovasc Intervent Radiol. 2010;33(2):260-9.

Rand T, Zander T, Jahnke T, Müller-hülsbeck S. Percutaneous transluminal angioplasty versus turbostatic carbon-coated stents in purpose: methods: results. Vasc Interv Radiol. 2011;261(2):634-42.

Scheinert D, Katsanos K, Zeller T, Koppensteiner R, Commeau P, Bosiers M, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the achilles trial. J Am Coll Cardiol. 2012;60(22):2290-5.

Zeller T, Baumgartner I, Scheinert D, Brodmann M, Bosiers M, Micari A, et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-Month results from the INPACT deep randomized trial. J Am Coll Cardiol. 2014;64(15):1568-76.

Siablis D, Kitrou PM, Spiliopoulos S, Katsanos K, Karnabatidis D. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: The IDEAS randomized controlled trial. JACC Cardiovasc Interv. 2014;7(9):1048-56.

Schulte KL, Pilger E, Schellong S, Tan K Ten, Baumann F, Langhoff R, et al. Primary self-expanding nitinol stenting vs balloon angioplasty with optional bailout stenting for the treatment of infrapopliteal artery disease in patients with severe intermittent claudication or critical limb ischemia (expand study). J Endovasc Ther. 2015;22(5):690-7.