Neurophysiology of learning in basic skills of laparoscopic surgery in undergraduate students
DOI:
https://doi.org/10.18203/2320-6012.ijrms20160031Keywords:
Neurophysiology, Learning, Laparoscopic surgery, Learning curves, Electroencephalogram, SimulatorsAbstract
Background: The development and progress in laparoscopic surgery requires greater emphasis on surgical skills, developing skills in undergraduate students allows them to be at the forefront in health demands.
Methods: An experimental and descriptive study of a group of 30 undergraduate students of the Faculty of Medicine. They attended 30 hours of theoretical and practical sessions distributed by 10 sessions, supported by basic simulators minimally invasive, being evaluated by checklist. Their brain activity was monitored with an electroencephalography before and after the development of skills.
Results: It was observed that the average necessary for the acquisition of skills is 5 sessions. The competition in which further progress was observed is video assistance. There is an increase in the activity of the prefrontal cortex on the electroencephalography.
Conclusions: A series of neurophysiologic processes involved in learning of laparoscopic surgery are described. Laparoscopic skills development lies in keeping them updated on the teaching-learning, where the use of simulators is growing.
References
Mingrone de Camarota PL. Metodología del estudio eficaz. Argentina. Capítulo 1. Estudiar es aprender. 2007:10-14.
De la mora LJ. Psicología del aprendizaje. México. La conducta y el aprendizaje. 1977:25-32.
Guyton AC. Tratado de Fisiología Médica. España. 2001:799-814.
Machado S, Portella CE, Silva JG, Velasques B, Bastos VH, Cunha M. Aprendizaje y memoria implícita: mecanismos y neuroplasticidad. Rev Neurol. 2008;46(9):543-9.
Wulf G, Schmidt RA. Variability of practice and implicit motor learning. J Exp Psycol. 1997:23(4):987-1006.
Poolton JM, Masters RS, Maxwell JP. The relationship between initial errorless learning conditions and subsequent performance. Hum Mov Sci. 2005;24(3):362-78.
Wilson MR, Vine SJ, Bright E, Masters RSW, Defriend D, Mc-Grath JS. Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: a randomized, controlled study. Surg Endosc. 2011;25(12):3731-9.
Granados RJ, Valderrama TA, Sevilla DM. Desarrollo de habilidades básicas en cirugía laparoscópica en estudiantes de segundo año de licenciatura de médico cirujano de la Facultad de
Medicina UNAM. Rev Mex Cir Endoscópica. 2010;11(3):129-35.
Veldkamp R, Kuhry E, Hop WCJ, Jeekel J, Kazemier G, Bonjer HJ, et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005;6:477–484.
Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A. Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc. 2004;18:485-94.
Debaerea F, Wenderotha N, Sunaertb S, Van Heckeb P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 2004;21:1416-27.
Martin JH. Neuroanatomy: text and Atlas, 3rd edn. McGraw Hill, New York. 2003.
Debaerea F, Wenderotha N, Sunaertb S, Van Heckeb P, Swinnen SP Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 2004;21:1416-27.
Bahrami P1, Graham SJ, Grantcharov TP, Cusimano MD, Rotstein OD, Mansur A. Neuroanatomical correlates of laparoscopic surgery training. Surg Endosc. 2014;28(7):2189-98.
Halsband U, Lange RK. Motor learning in man: a review of functional and clinical studies. J Physiol Paris. 2006;99:414-24.
Walton R, Theodorides A, Molloy A, Melling D. Is there a learning curve in foot and ankle Surgery? Foot Ankle Surg. 201;18(1):62–65.
Wulf G1, Shea C, Lewthwaite R. Motor skill learning and performance: a review of influential factors. Med Educ. 2010;44(1):75-84.
Ortega C, Franco JC. Neurofisiología del aprendizaje y la memoria. Plasticidad Neuronal iMedPub Journals. 2010; 6(1):2.
Fox SI. Fisiología Humana. 2ª ed., Madrid: McGraw-Hill Interamericana. 2008.
Zhang W, Luck SJ. Discrete fixedresolution representations in visual working memory. Nature. 2008;453(7192):233-5.
Barton B, Ester EF, Awh E. Discrete resource allocation in visual working memory. J Exp Psychol Hum Percept Perform. 2009;35(5):1359-67.
O’Herron P, Von der Heydt R. Shortterm memory for figureground organization in the visual cortex. Neuron. 2009;61(5):801-9.
Uncapher MR, Rugg MD. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information. J Neurosci. 2009;29(25):8270-9.
Friedlander MJ, Andrews L, Armstrong E, Aschenbrenner C, Kass J, Ogden P. What Can Medical Education Learn From the Neurobiology of Learning? Acad Med. 2011;86(4):415-20.
Zull, J. The Art of Changing the Brain. Sterling VA: Stylus Publishing LLC. 2002.
Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;(55):51-86.
Duarte J, Cury J, Oliveira LC, Srougi M. “Establishing the minimal number of virtual reality simulator training sessions necessary to develop basic laparoscopic skills competence: evaluation of the learning curve” Sao Paulo University Medical School CEPEC Vicky Safra. Department of Urology. 2013;39(5):712-9.
Quirarte CC, Muñoz HJD. La revolución pedagógica en la cirugía, parte II. Las teorías del
aprendizaje y las bases metodológicas de la enseñanza. Rev Mex Cir Endoscop. 2013;14,(S1):22-36.
Rosser JC, Lynch PJ, Haskamp L, Gentile DA, Yalif A. The impact of video games in surgical training. Arch Surg. 2007;142:181-6.
Goova MT, Hollett LA, Dale J, Scott DJ. Pre-training on Southwestern stations decreases training time and cost for proficiency-based Fundamentals of Laparoscopic Surgery (FLS) training. J Am Coll Surg. 2007;209(5):629-31.
Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychological review. 1993;100(3):363-406.
Ruge H, Wolfensteller U. Rapid formation of pragmatic rule representations in the human brain during instruction based learning. Cereb Cortex. 2009;20(7):1656 -67.
Ischebeck A, Zamarian L, Schocke M, Delazer M. Flexible transfer of knowledge in mental arithmetic—An fMRI study. Neuroimage. 2009;44(3):1103-12.
Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behaviour and positive reinforcement. Annu Rev Neurosci. 2007;30:289-316.