The incidence of AmpC β-lactamases producing Klebsiella pneumoniae subspecies pneumoniae

Authors

  • Priyanka Singh Department of Microbiology, RKDF Medical College, Bhopal, Madhya Pradesh, India

DOI:

https://doi.org/10.18203/2320-6012.ijrms20181043

Keywords:

AmpC β- lactamases, DP-Test, ESBL, E-Test, Klebsiella pneumonia

Abstract

Background: AmpC β- lactamases in the clinical isolates reduces the therapeutic value of β- lactam- β-lactam inhibitor combinations. if not detected can be disseminated in the hospital environment and pose a serious therapeutic challenge. Hence present study is undertaken to detect the incidence of AmpC β -lactamases producing Klebsiella pneumoniae subspecies pneumoniae out of total 300 Klebsiella pneumoniae subspecies pneumoniae isolated from different clinical samples of the patient attending Jawaharlal Nehru Medical College and its hospital in Dept of Microbiology.

Methods: Isolates are screened for presumptive AmpC production by testing their susceptibility to Cefoxitin using Kirby-Bauer disk diffusion method. Phenotypic confirmatory tests for detection of AmpC β- lactamases by Modified three dimentional test, Amp C disc test, Amp C disc test with Inhibitor (Boronic Acid) based disc potentiation test.

Results: In our present study 75 (25%) Klebsiella pneumoniae strains were positive for AmpC β lactamases production either alone or in combinations with other β- lactamases. 75 strains were positive for AmpC β-lactamase (25%). These 75 strains were further confirmed by E Test.

Conclusions: Overproduction of AmpC β- lactamases by mutation is responsible for resistance. if not detected can be pose a serious therapeutic challenge. So, its detection improves the therapeutic outcome in patient care.

References

Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin Nature. 1940;146:837.

Burman LG, Park JT, Lindstrὂm EB. Resistance of Escherichia coli to penicillins: identification of the structural gene for the chromosomal penicillinase. J. Bacteriol. 1973;116:123-30.

Knott-Hunziker V, Petursson S, Jayatilake GS. Active sites of β-lactamases. Biochem. J. 1982;201:621-7.

Ambler RP. The structure of β-lactamases. Phil. Trans. R.Soc. Lond. B. Biol. Sci. 1980;289:321-31.

Bush K, Jacoby GA, Medeiros A. A functional classification scheme for beta-lactamase and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211-33.

Philippon A, Arlet G, Jacoby GA. Plasmid determined AmpC type β- lactamases. Antimicrob Agents Chemother. 2002;46:1-11.

Praveen RM, Harish BN, Parija SC. AmpC Beta Lactamases among Gram Negative Clinical Isolates from Tertiary Hospital, South India. Brazilian Journal of Microbiology. 2010;41:596-602.

Washington CW, Stephen DA, Williams MJ, Elmer WK, Gary WP, Paul CS, et al. Antimicrobial susceptibility testing. in chapter 17. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th Ed, Lippincott Williams & Wilkins, Philadelphia, USA; 2006:945-1021.

Polsfuss S, Bloemberg GV, Giger J, Meyer V, Böttger EC, Hombach M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. Journal of clinical microbiology. 2011 Aug 1;49(8):2798-803.

Manchanda V, Singh NP. Occurrence and detection of AmpC β-lactamases among Gram negative clinical isolates using a modified three- dimensional tests at Guru Tegh Bahadur Hospital Delhi, Indian J. Antimicrobe Chemother. 2003;51:415-8.

Black JA, Moland ES, Thomson KS. AmpC disc test for detection of plasmid mediated AmpC β- lactamases in Enterobacteriaceae lacking chromosomal AmpC β- lactamases. J Clin Micro. 2005;43:3110-3.

Yagi T, Wachino JI, Kurokawa H, Suzuki S, Yamane K, Doi Y, et al. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Journal of Clin Mic. 2005 Jun 1;43(6):2551-8.

Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J of Clin Micr. 2002 Jun 1;40(6):2153-62.

Bauer AW, Kirby WMM, Sherris JC, Jurek M. Antibiotic susceptibility testing by standardised single disc method. Am. J. Clin Pathol. 1966;45:493-6.

Carter MW, Oakton KJ, Warner M, Livermore DM. Detection of extended spectrum beta lactamase in Klebsiella with the oxoid combination disc method. J Clin Microbiol. 2000;38:4228-32.

Coudron PE. Inhibitor based methods for detection of plasmid mediated AmpC β lactamases in Klebsiella spp., Escherichia coli and Proteus mirabilis. J. Clin. Microbiol. 2005;43:4163-7.

Philippon A, Arlet G, Jacoby GA. Plasmid determined AmpC type β- lactamases. Antimicrob Agents Chemother. 2002;46:1-11.

Paterson DL, Bonomo RA. Extended- spectrum β- lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005;18(4):657-86.

Gupta V, Kumarasamy K, Gulati N, Garg R, Krishnan P, Chandra J. AmpC β- lactamases in nosocomial isolates of Klebsiella pneumoniae from India. Indian J Med Res. 2012;136:237-41.

Ranjini CY, Rangasamy VR. Detection of ESBL and Plasmid- mediated AmpC β lactamases among Gram negative bacterial isolates in diabetic foot ulcer infections. Community Acquired Infections. 2015;2(2):57-62.

Downloads

Published

2018-03-28

How to Cite

Singh, P. (2018). The incidence of AmpC β-lactamases producing Klebsiella pneumoniae subspecies pneumoniae. International Journal of Research in Medical Sciences, 6(4), 1169–1173. https://doi.org/10.18203/2320-6012.ijrms20181043

Issue

Section

Original Research Articles